Tests of hypotheses

Confidence interval: Form an interval (on the basis of data)

of plausible values for a population pa-

rameter.

Test of hypothesis: Answer a yes or no question regarding

a population parameter.

Examples:

Do the two strains have the same average response?

Is the concentration of substance X in the water supply above the safe limit?

Does the treatment have an effect?

Example

We have a quantitative assay for the concentration of antibodies against a certain virus in blood from a mouse.

We apply our assay to a set of **ten** mice before and after the injection of a vaccine. (This is called a "paired" experiment.)

Let X_i denote the differences between the measurements ("after" minus "before") for mouse i.

We imagine that the X_i are independent and identically distributed normal(μ , σ).

Does the vaccine have an effect?

In other words: Is $\mu \neq 0$?

The data

3

Hypothesis testing

We consider two hypotheses:

Null hypothesis, H_0 : $\mu = 0$

Alt. hypothesis, H_a : $\mu \neq 0$

Type I error: Reject H₀ when it is true. (false positive)

Type II error: Fail to reject H_0 when it is false. (false negative)

We set things up so that a Type I error is a worse error (and so that we are seeking to prove the alternative hypothesis). We want to control the rate (the significance level, α) of such errors.

Test statistic:
$$T = (\bar{X} - 0)/(s/\sqrt{10})$$

We reject H_0 if $|T| > t^*$, where t^* is chosen so that

$$Pr(Reject H_0 \mid H_0 \text{ is true}) = Pr(|T| > t^* \mid \mu = 0) = \alpha.$$

(generally $\alpha = 5\%$)

Example (continued)

Under H_0 (i.e., when $\mu = 0$),

$$T = (\bar{X} - 0)/(s/\sqrt{10}) \sim t(df = 9)$$

We reject H_0 if |T| > 2.26.

As a result, if H_0 is true, there's a 5% chance that you'll reject it.

For the observed data:

$$\bar{X}$$
 = 1.93, s = 2.24, n = 10

$$T = (1.93 - 0) / (2.24/\sqrt{10}) = 2.72$$

Thus we reject H_0 .

The goal

We seek to prove the alternative hypothesis.

We are happy if we reject H_0 .

In the case that we reject H_0 , we might say,

"Either H_0 is false, or a rare event occurred."

Another example

Question: is the concentration of substance X in the water supply above the safe level?

$$X_1, X_2, \ldots, X_4 \sim \text{iid normal}(\mu, \sigma).$$

Null hyp., H_0 : $\mu \ge 6$ (unsafe)

Alt. hyp., H_a : μ < 6 (safe)

Test statistic:
$$T = \frac{\bar{X} - 6}{s/\sqrt{4}}$$

If we wish to have the significance level $\alpha = 5\%$, the rejection region is $T < t^* = -2.35$.

7

One-tailed vs two-tailed tests

If you are trying to prove that a treatment improves things, you want a one-tailed (or one-sided) test. (You'll reject H_0 only if $T < t^*$.)

If you are just looking for a difference, use a two-tailed (or two-sided) test. (You'll reject H_0 if $T < t^*$ or $T > t^*$.)

P-values

P-value:

smallest significance level (α) for which you would fail to reject H₀ with the observed data.

probability, if H₀ was true, of receiving data as extreme as what was observed.

$$X_1, \ldots, X_{10} \sim \text{iid normal}(\mu, \sigma)$$

$$H_0$$
: $\mu = 0$; H_a : $\mu \neq 0$.

Observe:
$$\bar{X} = 1.93$$
; s = 2.24
so $T_{obs} = \frac{1.93 - 0}{2.24 / \sqrt{10}} = 2.72$

P-value =
$$Pr(|T| > T_{obs})$$

= $2*pt(-2.72,9)$
= 2.4%.

9

Another example

$$X_1, \ldots, X_4 \sim \text{normal}(\mu, \sigma)$$

$$H_0$$
: $\mu \ge 6$; H_a : $\mu < 6$.

Observe:
$$\bar{X} = 5.51$$
; s = 0.43

$$T_{obs} = \frac{5.51 - 6}{0.43/\sqrt{4}} = -2.28$$

P-value = Pr(T < T_{obs} |
$$\mu$$
 = 4)
= pt(-2.28, 3) = 5.4%.

The P-value is (roughly) a measure of evidence against the null hypothesis.

Recall: We want to prove the alternative hypothesis (i.e., reject H₀; i.e., receive a small P-value)

Hypothesis tests and confidence intervals

The 95% confidence interval for μ is the set of values, μ_0 , such that the null hypothesis $H_0: \mu = \mu_0$ would not be rejected (by a two-sided test with $\alpha = 5\%$).

The 95% CI for μ is the set of plausible values of μ .

If a value of μ is plausible, then as a null hypothesis, it would not be rejected.

For example: 9.98 9.87 10.05 10.08 9.99 9.90 (assumed iid normal(μ , σ).) \bar{X} = 9.98; s = 0.082; n = 6 qt(0.975,5) = 2.57 95% CI for μ = 9.98 \pm 2.57 \cdot 0.082 / $\sqrt{6}$ = 9.98 \pm 0.086 = (9.89,10.06)

Power

The power of a test = $Pr(reject H_0 | H_0 is false)$.

The power depends on:

- The null hypothesis and test statistic
- The sample size
- ullet The true value of μ
- ullet The true value of σ

Why "fail to reject"?

If the data are insufficient to reject H_0 , we say,

"The data are insufficient to reject H_0 ."

We shouldn't say, "We have proven H_0 ."

Why? We have very low power to detect similar alternatives. We may have low power to detect anything but extreme differences.

We control the rate of type I errors ("false positives") at 5% (or whatever), but we have little or no control over the rate of type II errors.

The effect of sample size

Let X_1, \ldots, X_n be iid normal(μ, σ).

We wish to test $H_0: \mu = \mu_0$ vs $H_a: \mu \neq \mu_0$.

Imagine $\mu = \mu_a$.

$$n = 4$$

$$n = 16$$

Testing the difference between two means

Strain A: $X_1, \ldots, X_n \sim \text{iid normal}(\mu_A, \sigma_A)$

Strain B: $Y_1, \ldots, Y_m \sim \text{iid normal}(\mu_B, \sigma_B)$

Test H_0 : $\mu_A = \mu_B$ vs H_a : $\mu_A \neq \mu_B$

Test statistic: T =
$$\frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\mathbf{s}_A^2}{n} + \frac{\mathbf{s}_B^2}{m}}}$$

Reject H_0 if $|T| > t_{\alpha/2}$

If H₀ is true, then T follows (approximately) a t distr'n with k d.f. (k according to the nasty formula from the last lecture)

Example

Strain A: n=10; \bar{X} =55.2; s_A=7.64

Strain B: m=16; \bar{Y} =68.2; s_B=18.14

$$\bar{X} - \bar{Y} = -13.0$$
 $\widehat{SD}(\bar{X} - \bar{Y}) = \sqrt{7.64^2/10 + 18.1^2/16} = 5.14$

$$T = -13.0 / 5.14 = -2.53$$
 $k = ... = 21.8$

P-value = 2*pt(-2.53,21.8) = 1.9%.

Cite CIs as well as P-values

Example 1: 95% CI for $\mu_A - \mu_B = (-23.7, -2.4)$

P-value for test of $\mu_A = \mu_B = 1.9\%$.

Example 2: 95% CI for $\mu_A - \mu_B = (-1.84, -0.16)$

P-value for test of $\mu_A = \mu_B = 2.2\%$.

The P-value is just one number, and only says so much.

The confidence interval contains much more information.

17

Summary

- Tests of hypotheses = answering yes/no questions regarding population parameters
- Two kinds of errors:
 - Type I: Reject H₀ when it is true
 - Type II: Fail to reject H₀ when it is false
- We seek to reject the null hypothesis
- If we fail to reject H₀, we don't "accept H₀."
- P-value = probability, if H₀ is true, of obtaining data as extreme as was observed: Pr(data | no effect) rather than Pr(no effect | data)
- Power = probability of rejecting H_0 when it is false.
- Always look at the confidence interval as well as the P-value