Statistical tests

- Gather data to assess some hypothesis (e.g., does this treatment have an effect on this outcome?)
- Form a test statistic for which large values indicate a departure from the hypothesis.
- Compare the observed value of the statistic to its distribution under the null hypothesis.

Paired t-test

Pairs
$$(X_1, Y_1), \ldots, (X_n, Y_n)$$
 independent $X_i \sim \text{normal}(\mu_A, \sigma_A)$ $Y_i \sim \text{normal}(\mu_B, \sigma_B)$ Test $H_0: \mu_A = \mu_B$ vs $H_a: \mu_A \neq \mu_B$

Paired t-test

$$egin{aligned} D_{ ext{i}} &= Y_{ ext{i}} - X_{ ext{i}} \ D_{1}, \ldots, D_{ ext{n}} &\sim ext{iid normal}(\mu_{B} - \mu_{A}, \sigma_{D}) \end{aligned}$$

sample mean \bar{D} ; sample SD s_D

$$T = \bar{D}/(s_D/\sqrt{n})$$

Compare to t distribution with n - 1 d.f.

2

Example

$$\bar{D} = 14.7$$
 $s_D = 19.6$ $n = 11$

$$T = 2.50$$
 $P = 2*(1-pt(2.50,10)) = 0.031$

Assumptions

- Random sample from the target populations
 - Hard to check
 - Need a well-designed study
- Underlying population follows a normal distribution
 - Not necessary if the sample size is large (but large is relative)
 - Checkable, but really only if the sample size is large

Assessing normality

To assess the assumption that the underlying population follows a normal distribution, we often use a QQ plot.

 \bullet For a sample size n, look at n values evenly distributed between 0 and 1:

$$\frac{0.5}{n} \qquad \frac{1.5}{n} \qquad \frac{2.5}{n} \qquad \cdots \qquad \frac{n-0.5}{n}$$

• Look at the corresponding quantiles of the normal distribution.

qnorm(0.5/n) qnorm(1.5/n) qnorm(2.5/n)
$$\cdots$$
 qnorm((n-0.5)/n) i.e., qnorm(((1:n)-0.5)/n)

- Plot the sorted data values against these "idealized" draws from a normal distribution.
- Look for a straight line.

QQ plots

Examples

Skewed distribution

Heavy tails

7

Sign test

Suppose we are concerned about the normal assumption.

 $(X_1, Y_1), \ldots, (X_n, Y_n)$ independent

Test H₀: X's and Y's have the same distribution

Another statistic: $S = \#\{i : X_i < Y_i\} = \#\{i : D_i > 0\}$

(the number of pairs for which $X_i < Y_i$)

Under H_0 , $S \sim binomial(n, p=0.5)$

Suppose $S_{obs} > n/2$.

$$\begin{aligned} \text{P-value} &= 2 \times \text{Pr}(S \geq S_{\text{obs}} \mid H_0) \\ &= 2 * (1 - \text{pbinom}(\text{Sobs} - 1, n, 0.5)) \end{aligned}$$

Example

For our example, 8 out of 11 pairs had $Y_i > X_i$.

(Compare this to P = 3% for the t-test.)

9

Signed Rank test

Another "nonparametric" test. (Also called the Wilcoxon signed rank test)

Rank the differences according to their absolute values.

R = sum of ranks of positive (or negative) values

$$R = 2 + 4 + 5 = 11$$

Compare this to the distribution of R when each rank has an equal chance of being positive or negative.

In R: wilcox.test(d)
$$\longrightarrow$$
 P = 0.054

Permutation test

$$(X_1, Y_1), \ldots, (X_n, Y_n) \longrightarrow T_{obs}$$

- Randomly flip the pairs. (For each pair, toss a fair coin. If heads, switch X and Y; if tails, do not switch.)
- Compare the observed T statistic to the distribution of the T-statistic when the pairs are flipped at random.
- If the observed statistic is extreme relative to this permutation/randomization distribution, then reject the null hypothesis (that the X's and Y's have the same distribution).

Actual data:

```
(117.3,145.9) (100.1,94.8) (94.5,108.0) (135.5,122.6) (92.9,130.2) (118.9,143.9) (144.8,149.9) (103.9,138.5) (103.8,91.7) (153.6,162.6) (163.1,202.5) \longrightarrow T_{obs} = 2.50
```

Example shuffled data:

```
(117.3,145.9) (94.8,100.1) (108.0,94.5) (135.5,122.6) (130.2,92.9) (118.9,143.9) (144.8,149.9) (138.5,103.9) (103.8,91.7) (162.6,153.6) (163.1,202.5) \longrightarrow T^* = 0.19
```

Permutation distribution

P-value =
$$Pr(|T^*| \ge |T_{obs}|)$$

Small n: Look at all 2ⁿ possible flips

Large n: Look at a sample (w/ repl) of 1000 such flips

Example data:

All 2^{11} permutations: P = 0.037; sample of 1000: P = 0.040

12

Paired comparisons

At least four choices:

- Paired t-test
- Sign test
- Signed rank test
- Permutation test with the t-statistic

Which to use?:

- Paired t-test depends on the normality assumption
- Sign test is pretty weak
- Signed rank test ignores some information
- Permutation test is recommended

The fact that the permutation distribution of the t-statistic is generally well-approximated by a t distribution recommends the ordinary t-test. But if you can estimate the permutation distribution, do it.

2-sample t-test

$$X_1, \ldots, X_n \sim \text{iid normal}(\mu_A, \sigma)$$
 $Y_1, \ldots, Y_m \sim \text{iid normal}(\mu_B, \sigma)$

Test $H_0: \mu_A = \mu_B$ vs $H_a: \mu_A \neq \mu_B$

Test statistic: T =
$$\frac{\bar{X} - \bar{Y}}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}}$$
 where $s_p = \sqrt{\frac{s_A^2(n-1) + s_B^2(m-1)}{n+m-2}}$

Compare to t distribution with n + m - 2 degrees of freedom.

Example

$$\bar{X} = 47.5$$
 $s_A = 10.5$ $n = 6$
 $\bar{Y} = 74.3$ $s_B = 20.6$ $m = 9$
 $s_p = 17.4$ $T = -2.93$

P = 2*pt(-2.93, 6+9-2) = 0.011

Wilcoxon rank-sum test

Rank the X's and Y's from smallest to largest (1, 2, ..., n+m)

R = sum of ranks for X's

(Also known as the Mann-Whitney Test)

Χ	Υ	rank
35.0		1
38.2		2
43.3		3
	46.8	4
	49.7	5
50.0		6
	51.9	7
57.1		8
61.2		9
	74.1	10
	75.1	11
	84.5	12
	90.0	13
	95.1	14
	101.5	15

$$R = 1 + 2 + 3 + 6 + 8 + 9 = 29$$

P-value = 0.026

(use wilcox.test())

Note: The distribution of R (given that X's and Y's have the same dist'n) is calculated numerically

Permutation test

X or Y	group	
X_1	1	
X_2	1	
ŀ	1	
X_{n}	1	$\to T_{obs}$
Y_1	2	
Y_2	2	
:	2	
Y_{m}	2	

X or Y	group	
X_1	2	
X_2	2	
:	1	
X_{n}	2	\rightarrow T*
Y_1	1	
Y_2	2	
:	1	
Y_{m}	1	_

Group status shuffled

Compare the observed t-statistic to the distribution obtained by randomly shuffling the group status of the measurements.

Permutation distribution

P-value =
$$Pr(|T^*| \ge |T_{obs}|)$$

Small n & m: Look at all $\binom{n+m}{n}$ possible shuffles

Large n & m: Look at a sample (w/ repl) of 1000 such shuffles

Example data:

All 5005 permutations: P = 0.015; sample of 1000: P = 0.013

Estimating the permutation P-value

Let P = true P-value (if we do all possible shuffles)

Do N shuffles, and let X = # times the statistic after shuffling \geq the observed statistic

$$\hat{P} = \frac{X}{N}$$
 where $X \sim \text{binomial}(N, P)$

$$\label{eq:energy_energy} \mathsf{E}(\hat{\mathsf{P}}) = \mathsf{P} \qquad \ \mathsf{SD}(\hat{\mathsf{P}}) = \sqrt{\frac{\mathsf{P}(1-\mathsf{P})}{\mathsf{N}}}$$

If the "true" P-value P = 5% and we do N=1000 shuffles, $SD(\hat{P})$ = 0.7%.

19

Summary

The t-test relies on a normality assumption

If this is a worry, consider:

- Paired data:
 - Sign test
 - Signed rank test
 - Permutation test
- Unpaired data:
 - Rank-sum test
 - Permutation test

Crucial assumption: independence

The fact that the permutation distribution of the t-statistic is often closely approximated by a t distribution is good support for just doing t-tests.