[Carroll, *J Med Entomol* **38**:114–117, 2001]

Place tick on clay island surrounded by water, with two capillary tubes: one treated with deer-gland-substance; one untreated.

Does the tick go to the treated or the untreated tube?

Tick sex	Leg	Deer sex	treated	untreated
male	fore	female	24	5
female	fore	female	18	5
male	fore	male	23	4
female	fore	male	20	4
male	hind	female	17	8
female	hind	female	25	3
male	hind	male	21	6
female	hind	male	25	2

Is the tick more likely to go to the treated tube?

Test for a proportion

Suppose $X \sim \text{binomial}(n, p)$.

Test
$$H_0: p = \frac{1}{2} \text{ vs } H_a: p \neq \frac{1}{2}$$

Reject
$$H_0$$
 if $X \ge H$ or $X \le L$

Choose H and L such that

$$\Pr(X \ge H \mid p = \frac{1}{2}) \le \alpha/2 \text{ and } \Pr(X \le L \mid p = \frac{1}{2}) \le \alpha/2$$

Thus $Pr(Reject H_0 | H_0 is true) \leq \alpha$.

The difficulty: The binomial distribution is hard to work with. Because of its discrete nature, you can't get exactly your desired significance level (α) .

•

Rejection region

Consider $X \sim binomial(n=29, p)$

Test of $H_0: p = \frac{1}{2}$ vs $H_a: p \neq \frac{1}{2}$ at significance level $\alpha = 0.05$

Lower critical value:

$$qbinom(0.025, 29, 0.5) = 9$$

$$Pr(X \le 9) = pbinom(9, 29, 0.5) = 0.031 \rightarrow L = 8$$

Upper critical value:

$$qbinom(0.975, 29, 0.5) = 20$$

$$Pr(X \ge 20) = 1-pbinom(20,29,0.5) = 0.031 \rightarrow H = 21$$

Reject H_0 if $X \le 8$ or $X \ge 21$. (For testing $H_0: p = \frac{1}{2}$, H = n - L.)

Significance level

Consider $X \sim \text{binomial}(n=29, p)$

Test of H_0 : $p = \frac{1}{2}$ vs H_a : $p \neq \frac{1}{2}$ at significance level $\alpha = 0.05$ Reject H_0 if X < 8 or X > 21.

Actual significance level:

$$\alpha = \Pr(X \le 8 \text{ or } X \ge 21 \mid p = \frac{1}{2})$$

$$= \Pr(X \le 8 \mid p = \frac{1}{2}) + [1 - \Pr(X \le 20 \mid p = \frac{1}{2})]$$

$$= pbinom(8,29,0.5) + 1-pbinom(20,29,0.5)$$

$$= 0.024$$

If we used, instead, "Reject H_0 if $X \le 9$ or $X \le 20$," the significance level would be:

$$pbinom(9,29,0.5) + 1-pbinom(19,29,0.5) = 0.061$$

5

Example

Observe X = 24 (for n = 29)

Reject
$$H_0: p = \frac{1}{2}$$
 if $X \le 8$ or $X \ge 21$.

Thus we reject H_0 and conclude that the ticks were more likely to go to the deer-gland-substance-treated tube.

P-value =
$$2 \times Pr(X \ge 24 \mid p = \frac{1}{2})$$

= $2 * (1 - pbinom(23, 29, 0.5))$
= $5/10,000$.

Alternatively: binom.test(24, 29)

Observe X = 17 (for n = 25); assume X \sim binomial(n=25, p)

Test
$$H_0 : p = \frac{1}{2} \text{ vs } H_a : p \neq \frac{1}{2}$$

Rejection rule: Reject H_0 if $X \le 7$ or $X \ge 18$

Significance level:

$$pbinom(7,25,0.5) + 1-pbinom(17,25,0.5) = 0.043$$

Since we observed X = 17, we fail to reject H_0

$$P$$
-value = $2*(1-pbinom(16,25,0.5)) = $0.11$$

Confidence interval for a proportion

Suppose $X \sim \text{binomial}(n=29, p)$ and we observe X = 24.

Consider the test of $H_0: p = p_0$ vs $H_a: p \neq p_0$

We reject H₀ if

$$\Pr(X \le 24 \mid p = p_0) \le \alpha/2$$
 or $\Pr(X \ge 24 \mid p = p_0) \le \alpha/2$

95% confidence interval for p:

The set of p_0 for which a two-tailed test of H_0 : $p = p_0$ would not be rejected, for the observed data, with $\alpha = 0.05$.

The "plausible" values of p.

 $X \sim \text{binomial(n=29, p); observe } X = 24$

Lower bound of 95% confidence interval:

Largest p_0 such that $Pr(X \ge 24 \mid p = p_0) \le 0.025$

Upper bound of 95% confidence interval:

Smallest p_0 such that $Pr(X \le 24 \mid p = p_0) \le 0.025$

In R: binom.test(24,29)

95% CI for p: (0.642, 0.942)

Note: $\hat{p} = 24/29 = 0.83$ is not the midpoint of the CI

Binomial(n=29, p=0.64)

Binomial(n=29, p=0.94)

 $X \sim \text{binomial(n=25, p); observe } X = 17$

Lower bound of 95% confidence interval:

 p_L such that 17 is the 97.5 percentile of binomial(n=25, p_L)

Upper bound of 95% confidence interval:

p_H such that 17 is the 2.5 percentile of binomial(n=25, p_H)

In R: binom.test(17,25)

95% CI for p: (0.465, 0.851)

Again, $\hat{p} = 17/25 = 0.68$ is not the midpoint of the CI

11

Binomial(n=25, p=0.46)

Binomial(n=25, p=0.85)

The case X = 0

Suppose $X \sim \text{binomial}(n, p)$ and we observe X = 0.

Lower limit of 95% confidence interval for p: 0

Upper limit of 95% confidence interval for p:

p_H such that

$$\begin{split} &\text{Pr}(X \leq 0 \mid p = p_H) = 0.025 \\ \Longrightarrow &\text{Pr}(X = 0 \mid p = p_H) = 0.025 \\ \Longrightarrow &(1 - p_H)^n = 0.025 \\ \Longrightarrow &1 - p_H = \sqrt[n]{0.025} \\ \Longrightarrow &p_H = 1 - \sqrt[n]{0.025} \end{split}$$

In the case n = 10 and X = 0, the 95% CI for p is (0, 0.31)

A mad cow example

New York Times, Feb 3, 2004:

The department [of Agriculture] has not changed last year's plans to test 40,000 cows nationwide this year, out of 30 million slaughtered. Janet Riley, a spokeswoman for the American Meat Institute, which represents slaughterhouses, called that "plenty sufficient from a statistical standpoint."

Suppose that the 40,000 cows tested are chosen at random from the population of 30 million cows, and suppose that 0 (or 1, or 2) are found to be infected.

How many of the 30 million total cows would we estimate to be infected?

What is the 95% confidence interval for the total number of infected cows?

No. ir	nfected	
Obs'd	Est'd	95% CI
0	0	0 – 2763
1	750	19 – 4173
2	1500	181 – 5411

The case X = n

Suppose $X \sim \text{binomial}(n, p)$ and we observe X = n.

Upper limit of 95% confidence interval for p: 1

Lower limit of 95% confidence interval for p:

p_L such that

$$\begin{aligned} & \text{Pr}(X \geq n \mid p = p_L) = 0.025 \\ \Longrightarrow & \text{Pr}(X = n \mid p = p_L) = 0.025 \\ \Longrightarrow & (p_L)^n = 0.025 \\ \Longrightarrow & p_L = \sqrt[n]{0.025} \end{aligned}$$

In the case n = 25 and X = 25, the 95% CI for p is (0.86, 1.00)

15

Large n and medium p

Suppose $X \sim \text{binomial}(n, p)$.

$$E(X) = n \ p \qquad SD(X) = \sqrt{n \ p(1-p)}$$

$$\hat{p} = X/n \qquad E(\hat{p}) = p \qquad SD(\hat{p}) = \sqrt{\frac{p(1-p)}{n}}$$

For large n and medium p, $\hat{p} \sim \text{normal}\bigg(p, \sqrt{\frac{p(1-p)}{n}}\bigg)$

Use 95% confidence interval $\hat{p}\pm 1.96~\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

Unfortunately, this usually behaves poorly.

Fortunately, you can just use binom.test()