Goodness of fit - 2 classes

R W 78 22

Do these data correspond reasonably to the proportions 3:1?

We could use what we've learned...

A couple of lectures ago, we discussed several options for testing $p_R = 0.75$:

- Exact p-value
- Normal approximation
- Randomization test

RR	RW	WW
35	43	22

Do these data correspond reasonably to the proportions 1:2:1?

3

The χ^2 test

Back to the first example:

	R	W	total
observed	78	22	100
expected	75	25	100

Say $p_R = Pr(R)$ and $p_W = Pr(W) = 1 - p_R$

We want to test $H_0: (p_R, p_W) = (3/4, 1/4)$ versus $H_a: (p_R, p_W) \neq (3/4, 1/4)$.

Consider the statistic

$$X^{2} = \sum \frac{(\text{observed} - \text{expected})^{2}}{\text{expected}}$$

$$= \frac{(78 - 75)^{2}}{75} + \frac{(22 - 25)^{2}}{25} = 0.48$$

Null distribution

Observed counts = $(n_{\text{R}},n_{\text{W}})$ with $n_{\text{R}}+n_{\text{W}}=100$

Under the null hypothesis, $n_R \sim binomial(n = 100, p = 3/4)$

Possible values of n_R : 0, 1, 2, ..., 100

Corresponding probabilities: $\binom{100}{k}(\frac{3}{4})^k(\frac{1}{4})^{100-k}$

Consider the correponding values of the X² statistic

 \longrightarrow null distribution of X^2

Alternatively, use computer simulation to estimate the null distribution

Even better: for large samples, the null distribution is approximately $\chi^2(\mathrm{df}=1)$.

5

Exact null distribution

 χ^2 (df=1) distribution

Generalization to more than two groups

If we have k groups, then the χ^2 statistic is still

$$X^2 = \sum \frac{(\mathsf{observed} - \mathsf{expected})^2}{\mathsf{expected}}$$

If H_0 is true (and the sample size is large),

$$X^2 \sim \chi^2$$
(df=k-1).

Our 3-group example

We observe data like that in the following table:

RR	RW	WW
35	43	22

We want to know:

Do these data correspond reasonably to the proportions 1:2:1?

9

Our 3-group example

We observe data like that in the following table:

	RR	RW	WW
observed	35	43	22
expected	25	50	25

$$X^2 = \sum rac{(ext{observed} - ext{expected})^2}{ ext{expected}}$$

$$= rac{(35 - 25)^2}{25} + rac{(43 - 50)^2}{50} + rac{(22 - 25)^2}{25}$$

$$= 5.34$$

1-pchisq(5.34, 2) $\approx 6.9\%$

Or: chisq.test(c(35,43,22), p=c(0.25, 0.5, 0.25))

Another example

In a dihybrid cross of tomatos we expect the ratio of the phenotypes to be 9:3:3:1. In 1611 tomatos, we observe the numbers 926, 288, 293, 104. Do these numbers support our hypothesis?

Phenotype	Obs	Exp	(Obs-Exp) ² /Exp
Tall, cut-leaf	926	906.2	0.43
Tall, potato-leaf	288	302.1	0.65
Dwarf, cut-leaf	293	302.1	0.27
Dwarf, potato-leaf	104	100.7	0.11
Sum	1611		1.47

11

Results

The χ^2 statistics is 1.47. Using a χ^2 (df=3) distribution, we get a p-value of 0.69. We therefore have no evidence against the hypothesis that the ratio of the phenotypes is 9:3:3:1.

Stepping back...

We observe data like that in the following table:

RR	RW	WW
35	43	22

We want to know:

Do these data correspond reasonably to the proportions 1:2:1?

I have neglected to make precise the role of chance in this business.

Multinomial distribution

- Imagine an urn with k types of balls.
 Let p_i denote the proportion of type i.
- Draw n balls with replacement.
- Outcome: (n_1, n_2, \dots, n_k) , with $\sum_i n_i = n$ where $n_i = n$. balls drawn that were of type i.

Examples

- The binomial distribution: the case k = 2.
- Self a heterozygous plant, obtain 50 progeny, and use test crosses to determine the genotypes of each of the progeny.
- Obtain a random sample of 30 people from UW, and classify them according to student/faculty/staff.

15

Multinomial probabilities

$$\begin{split} P(X_1 = n_1, \dots, X_k = n_k) &= \frac{n!}{n_1! \times \dots \times n_k!} \; p_1^{n_1} \times \dots \times p_k^{n_k} \end{split}$$
 if $0 \leq n_i \leq n, \quad \sum_i n_i = n$

Otherwise $P(X_1=n_1,...,X_k=n_k)=0$.

Example

Let
$$(p_1, p_2, p_3) = (0.25, 0.50, 0.25)$$
 and $n = 100$. Then

$$P(X_1=35, X_2=43, X_3=22) = \frac{100!}{35! \ 43! \ 22!} \ 0.25^{35} \ 0.50^{43} \ 0.25^{22}$$
$$\approx 7.3 \times 10^{-4}$$

Rather brutal, numerically speaking.

The solution: take logs (and use a computer).

Goodness of fit test

We observe $(n_1, n_2, n_3) \sim$ multinomial(n, (p_1, p_2, p_3)).

We seek to test $H_0: p_1 = 0.25, p_2 = 0.5, p_3 = 0.25.$ versus $H_a: H_0$ is false.

We need:

- (a) A test statistic
- (b) The null distribution of the test statistic

Test statistic

$$X^2 = \sum \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$$

19

Null distribution of test statistic

What values of X² should we expect, if H₀ were true?

The null distributions of these statistics may be obtained by:

- Brute-force analytic calculations
- Computer simulations
- Asymptotic approximations

The brute-force method

$$Pr(\mathit{X}^2 = g \mid H_0) = \sum_{\substack{n_1, n_2, n_3 \\ \text{giving X}^2 = g}} Pr(n_1, n_2, n_3 \mid H_0)$$

This is usually not feasible.

21

Computer simulation

- 1. Simulate a table conforming to the null hypothesis. e.g., simulate $(n_1, n_2, n_3) \sim$ multinomial(n=100, (1/4, 1/2, 1/4))
- 2. Calculate your test statistic.
- 3. Repeat steps (1) and (2) many (e.g., 1000 or 10,000) times.

Estimated critical value = the 95th percentile of the results

Estimated P-value = the prop'n of results > the observed value.

In R, use rmultinom(n, size, prob) to do n simulations of a multinomial(size, prob).

Asymptotic approximation

Very mathemathically savy people have shown that, if the sample size, n, is large,

$$X^2 \sim \chi^2 (k-1)$$

23

Example

We observe the following data:

RR	RW	WW
35	43	22

We imagine that these are counts

$$(n_1, n_2, n_3) \sim multinomial(n=100, (p_1, p_2, p_3)).$$

We seek to test $H_0: p_1 = 1/4, p_2 = 1/2, p_3 = 1/4$.

We calculate $X^2 \approx 5.34$.

Referring to the asymptotic approximations (χ^2 dist'n with 2 degrees of freedom), we obtain P \approx 6.9%.

With 10,000 simulations under H_0 , we obtain $P \approx 7.4\%$.

Est'd null dist'n of chi-square statistic

25

Summary and recommendation

For the χ^2 test:

- \bullet The null distribution is approximately $\chi^2(\mathbf{k-1})$ if the sample size is large.
- The null distribution can be approximated by simulating data under the null hypothesis.

If the sample size is sufficiently large that the expected count in each cell is ≥ 5 , use the asymptotic approximation without worries.

Otherwise, consider using computer simulations.