### Goodness of fit

We observe data like that in the following table:

| RR | RW | WW |
|----|----|----|
| 35 | 43 | 22 |

We want to know:

Do these data correspond reasonably to the proportions 1:2:1?

### Goodness of fit

|          | RR | RW | WW |
|----------|----|----|----|
| observed | 35 | 43 | 22 |
| expected | 25 | 50 | 25 |

$$X^2 = \sum rac{( ext{observed} - ext{expected})^2}{ ext{expected}}$$

$$= rac{(35 - 25)^2}{25} + rac{(43 - 50)^2}{50} + rac{(22 - 25)^2}{25}$$

$$= 5.34$$

1-pchisq(5.34, 2)  $\approx 6.9\%$ 

Or: chisq.test(c(35,43,22), p=c(0.25, 0.5, 0.25))

-

## Composite hypotheses

Sometimes, we ask not  $p_{AA} = 0.25, p_{AB} = 0.5, p_{BB} = 0.25$ 

But rather something like:

$$p_{AA} = f^2, p_{AB} = 2f(1 - f), p_{BB} = (1 - f)^2$$
 for some f

For example: Genotypes, of a random sample of individuals, at a diallelic locus.

Question: Is the locus in Hardy-Weinberg equilibrium (as expected in the case of random mating)?

#### Example data:

| AA | AB | ВВ |
|----|----|----|
| 5  | 20 | 75 |

# Another example

ABO blood groups; 3 alleles A, B, O.

Phenotype A = genotype AA or AO

B = genotype BB or BO

AB = genotype AB

O = genotype O

Allele frequencies:  $f_A, f_B, f_O$  (Note that  $f_A + f_B + f_O = 1$ )

Under Hardy-Weinberg equilibrium, we expect:

$$\begin{split} p_A &= f_A^2 + 2 f_A f_O \\ p_B &= f_B^2 + 2 f_B f_O \end{split} \qquad \begin{split} p_{AB} &= 2 f_A f_B \\ p_O &= f_O^2 \end{split}$$

| 0   | Α  | В  | AB |
|-----|----|----|----|
| 104 | 91 | 36 | 19 |

3

## $\chi^2$ test for these examples

- Obtain the maximum likelihood estimates (MLE) under H<sub>0</sub>.
- Calculate the corresponding cell probabilities.
- Turn these into (estimated) expected counts under H<sub>0</sub>.
- Calculate  $X^2 = \sum \frac{(observed expected)^2}{expected}$

5

### Null distribution for these cases

- Computer simulation: (with one wrinkle)
  - Simulate data under H<sub>0</sub> (plug in the MLEs for the observed data)
  - Calculate the MLE with the simulated data
  - Calculate the test statistic with the simulated data
  - Repeat many times.
- Asymptotic approximation
  - Under  $H_0$ , if the sample size, n, is large, the  $\chi^2$  statistic follows, approximately, a  $\chi^2$  distribution with k-s-1 degrees of freedom, where s=no. parameters estimated under  $H_0$ .
  - Note that s = 1 for example 1, and s = 2 for example 2, and so df = 1 for both examples.

# Results, example 1

Example data:

$$H_0: \qquad p_{AA}=f^2, p_{AB}=2f(1-f), p_{BB}=(1-f)^2 \qquad \text{for some } f$$

MLE:  $\hat{f} = (5 + 20/2) / 100 = 15\%$ 

**Expected counts:** 

2.25 25.5 72.25

Test statistics:  $X^2 = 4.65$ 

Asymptotic  $\chi^2(df = 1)$  approx'n:  $P \approx 3.1\%$ 

10,000 computer simulations:  $P \approx 2.5\%$ 

7

#### Est'd null dist'n of chi-square statistic



## Results, example 2

### Example data:

| 0   | Α  | В  | AB |
|-----|----|----|----|
| 104 | 91 | 36 | 19 |

$$H_0: \quad p_A = f_A^2 + 2 f_A f_O, \\ p_B = f_B^2 + 2 f_B f_O, \\ p_{AB} = 2 f_A f_B, \\ p_O = f_O^2, \quad \text{for some } f_A, f_B, f_O = f_O^2, \\ f_B = f_B^2 + 2 f_B f_O, \\ f_B = f_B^2 + 2 f_$$

MLE:  $\hat{f}_O \approx$  63.4%,  $\hat{f}_A \approx$  25.0%,  $\hat{f}_B \approx$  11.6%.

**Expected counts:** 

| 100.5 | 94.9 | 40.1 | 14.5 |
|-------|------|------|------|

Test statistics:  $X^2 = 2.10$ 

Asymptotic  $\chi^2(df = 1)$  approx'n:  $P \approx 15\%$ 

10,000 computer simulations:  $P \approx 15\%$ 

(

#### Est'd null dist'n of chi-square statistic



## Example 3

A scientist applied a dose of DDT to groups of 10 spider mites and counted the number of mites (out of ten) that survived. A total of 50 groups of mites were considered.

#### Q: Does this look a binomial distribution?

If 
$$X \sim \text{binomial}(n=10,p),$$
 
$$\Pr(X=k) = {10 \choose k} p^k (\mathbf{1}-p)^{\mathbf{10}-k} \qquad \text{for some } p.$$

11

### $\chi^2$ test

MLE, 
$$\hat{p} = (0 \times 6 + 1 \times 03 + 2 \times 15 + \dots 10 \times 0) / (50 \times 10) = 0.232$$

$$X^2 = \sum \frac{(\mathsf{obs} - \mathsf{exp})^2}{\mathsf{exp}} = \frac{(6 - 3.6)^2}{3.6} + \frac{(10 - 10.8)^2}{10.8} + \frac{(15 - 14.7)^2}{14.7} + \dots + \frac{(0 - 0)^2}{0} = 15.4$$

Compare to  $\chi^2(df = 11 - 1 - 1 = 9) \longrightarrow p\text{-value} = 0.082$ .

By computer simulation: p-value = 0.045

### Null simulation results

#### Full distribution (by simulation)



#### Focus on the left part



### Combine the rare bins

$$X^2 = \sum \frac{(\mathsf{obs} - \mathsf{exp})^2}{\mathsf{exp}} = \frac{(\mathsf{6} - 3.6)^2}{3.6} + \frac{(\mathsf{10} - \mathsf{10.8})^2}{\mathsf{10.8}} + \frac{(\mathsf{15} - \mathsf{14.7})^2}{\mathsf{14.7}} + \dots + \frac{(\mathsf{4} - 2.9)^2}{2.9} = \mathbf{4.55}$$

Compare to  $\chi^2(df = 6 - 1 - 1 = 4) \longrightarrow p\text{-value} = 0.34$ .

By computer simulation: p-value = 0.34

14

13

## Null simulation results (combining rare bins)



Back to the question

A scientist applied a dose of DDT to groups of 10 spider mites and counted the number of mites (out of ten) that survived. A total of 50 groups of mites were considered.

Q: Does this look a binomial distribution?

15

### A final note

With these sorts of goodness-of-fit tests, we are often happy when are model does fit. In other words, we often prefer to fail to reject  $H_0$ .

Such a conclusion, that the data fit the model reasonably well, should be phrased and considered with caution.

We should think: how much power do I have to detect, with these limited data, a reasonable deviation from  $H_0$ ?