2 x 2 tables

Apply a treatment to 20 mice from strains A and B, and observe survival.

Question: Are the survival rates in the two strains the same?

Gather 100 rats and determine whether they are infected with viruses A and B.

Question: Is infection with virus A independent of infection with virus B?

Underlying probabilities

Observed data

Underlying probabilities

Model:

$$(n_{00},n_{01},n_{10},n_{11}) \sim \text{multinomial(} \; n\text{, } (p_{00},p_{01},p_{10},p_{11}) \;)$$
 or

$$n_{01} \sim binomial(n_{0+}, p_{01}/p_{0+})$$
 and $n_{11} \sim binomial(n_{1+}, p_{11}/p_{1+})$

Conditional probabilities

Underlying probabilities

Conditional probabilities

$$Pr(B = 1 \mid A = 0) = p_{01}/p_{0+}$$

$$Pr(B = 1 \mid A = 1) = p_{11}/p_{1+}$$

$$Pr(A = 1 \mid B = 0) = p_{10}/p_{+0}$$

$$Pr(A = 1 \mid B = 1) = p_{11}/p_{+1}$$

The questions in the two examples are the same!

They both concern: $p_{01}/p_{0+} = p_{11}/p_{1+}$

Equivalently: $p_{ij} = p_{i+} \times p_{+j}$ for all i,j

This is a "composite hypothesis"

A different view

 p_{00} p_{01} p_{10} p_{11}

 $H_0: \quad p_{ij} = p_{i+} \times p_{+j} \text{ for all } i,j \qquad \qquad H_0: \quad p_{ij} = p_{i+} \times p_{+j} \text{ for all } i,j$

degrees of freedom = 4 - 2 - 1 = 1

Expected counts

Observed data

Expected counts

To get the expected counts under the null hypothesis we:

- 1. Estimate p_{1+} and p_{+1} by n_{1+}/n and n_{+1}/n , respectively. (i.e., MLEs under H_0 .
- 2. Turn these into estimates of the p_{ii}.
- 3. Multiply these by the total sample size, n.

The expected counts

The expected count (assuming H_0) for the "11" cell is the following:

$$\begin{split} e_{11} &= n \times \hat{p}_{11} \\ &= n \times \hat{p}_{1+} \times \hat{p}_{+1} \\ &= n \times (n_{1+}/n) \times (n_{+1}/n) \\ &= (n_{1+} \times n_{+1})/n \end{split}$$

The other cells are similar.

We can then calculate the χ^2 statistic as before!

Example 1

Observed data

Expected counts

$$X^2 = \frac{(18-14.5)^2}{14.5} + \frac{(11-14.5)^2}{14.5} + \frac{(2-5.5)^2}{5.5} + \frac{(9-5.5)^2}{5.5} = 6.14$$

P-value (based on the asymptotic $\chi^2(df = 1)$ approximation): 1.3%

Example 2

Observed data

Expected counts

$$X^2 = \frac{(9-5.2)^2}{5.2} + \frac{(20-23.8)^2}{23.8} + \frac{(9-12.8)^2}{12.8} + \frac{(62-58.2)^2}{58.2} = 4.70$$

P-value (based on the asymptotic $\chi^2(df = 1)$ approximation): 3.0%

Fisher's exact test

Observed data

- Assume the null hypothesis (independence) is true.
- Constrain the marginal counts to be as observed.
- What's the chance of getting this exact table?

٠

Hypergeometric distribution

- Imagine an urn with K white balls and N K black balls.
- Draw n balls without replacement.
- Let x = no. white balls in the sample.
- x follows a hypergeometric distribution (with parameters K, N, and n.)

Hypergeometric probabilities

Suppose $X \sim \text{hypergeometric}(N, K, n)$.

[i.e., no. white balls in sample of n, without replacement from an urn with K white and N – K black]

$$Pr(X = x) = \frac{\binom{K}{x} \binom{N-K}{n-x}}{\binom{N}{n}}$$

Example:

In urn
$$N = 40, \, K = 29, \, n = 20$$

$$\begin{array}{ccc} 0 & 1 \\ 18 & 20 \\ & \text{not} \end{array} \qquad Pr(X = 18) = \frac{\binom{29}{18}\binom{40-29}{20-18}}{\binom{40}{20}} \approx 1.4\%$$

$$\begin{array}{ccc} 29 & 11 & 40 \end{array}$$

The hypergeometric in R

```
dhyper(x, m, n, k)
phyper(q, m, n, k)
qhyper(p, m, n, k)
rhyper(nn, m, n, k)
```

In R, things are set up so that

m = no. white balls in urn

n = no. black balls in urn

k = no. balls sampled (without replacement)

x = no. white balls in sample

Back to Fisher's exact test

Observed data

- Assume the null hypothesis (independence) is true.
- Constrain the marginal counts to be as observed.
- Pr(observed table | H₀) = Pr(X=18) where $X \sim \text{hypergeometric}(N=40,$ K=29, n=20

Fisher's exact test

- 1. For all possible tables (with the observed marginal counts), calculate the relevant hypergeometric probability.
- 2. Use that probability as a statistic.
- 3. P-value (for Fisher's exact test of independence) = the sum of the probabilities for all tables having a probability equal to or smaller than that observed.

An illustration

The observed data

N Y A 18 2 20 B 11 9 20 29 11 40

All possible tables (with these marginals):

Fisher's exact test: Example 1

Observed data

P-value
$$\approx 3.1\%$$

Recall:

$$\chi^2$$
 test: P-value = 1.3%

Fisher's exact test: Example 2

Observed data

P-value
$$\approx$$
 4.4%

Recall:

 χ^2 test: P-value = 3.0%

17

Summary

Testing for independence in a 2 x 2 table:

- A special case of testing a composite hypothesis in a one-dimensional table.
- Can use the χ^2 test, as before.
- Can also use Fisher's exact test.
- I prefer Fisher's exact test (for aesthetic reasons).

Paired data

Gather 100 rats and determine whether they are infected with viruses A and B.

Underlying probabilities

Another question: Is the rate of infection of virus A the same as that of virus B?

In other words (ur...symbols): Is
$$p_{1+} = p_{+1}$$
? (Equivalently, is $p_{10} = p_{01}$?)

19

McNemar's Test

$$H_0$$
: $p_{01} = p_{10}$

Under H_0 , the expected counts for cells 01 and 10 are both $(n_{01}+n_{10})/2$.

The
$$\chi^2$$
 test statistic reduces to $X^2 = \frac{(n_{01} - n_{10})^2}{n_{01} + n_{10}}$

For large sample sizes, this statistic has null distribution that is approximately a $\chi^2(df = 1)$.

For the example:
$$X^2 = (20 - 9)^2 / 29 = 4.17 \longrightarrow P = 4.1\%$$
.

An exact test

Condition on $n_{01} + n_{10}$.

 $\label{eq:under H0} \text{Under } H_0, \, n_{01} \mid n_{01} + n_{10} \quad \sim \quad \text{binomial} (n_{01} + n_{10}, 1/2).$

In R, use the function binom.test.

For the example, P = 6.1%.

21

Paired data

Paired data

$$P = 6.1\%$$

Unpaired data

$$P = 9.5\%$$

Taking appropriate account of the "pairing" is important!