

The ANOVA model

Three different ways to describe the model:

- A. Y_{ti} independent with $Y_{ti} \sim N(\mu_t, \sigma^2)$
- B. $Y_{ti} = \mu_t + \epsilon_{ti}$ where $\epsilon_{ti} \sim \text{ iid } N(0, \sigma^2)$
- C. $Y_{ti} = \mu + \tau_t + \epsilon_{ti}$ where $\epsilon_{ti} \sim \text{ iid N}(0, \sigma^2)$ and $\sum_t \tau_t = 0$

2

Example

For each of 8 mothers and 8 fathers, we observe (estimates of) the number of crossovers, genome-wide, in a set of independent meiotic products.

Question:

Do the fathers (or mothers) vary in the number of crossovers they deliver?

3

Female meioses

Male meioses

5

ANOVA tables

Female meioses:

source	SS	df	MS	F	P-value
between families	1485	7	212.2	4.60	0.0002
within families	3873	84	46.1		
total	5358	91			

Male meioses:

source	SS	df	MS	F	P-value
between families	114	7	16.3	1.23	0.30
within families	1112	84	13.2		
total	1226	91			

Permutation test

The P-values calculated above rely on the assumption that the measurements in the underlying populations are normally distributed.

Alternatively, one may use a permutation (aka randomization) test to obtain P-values.

- 1. Permute (shuffle) the XO counts relative to the family IDs.
- 2. Re-calculate the F statistic.
- 3. Repeat (1) and (2) many times (e.g., 1000 or 10,000 times).
- 4. Estimate the P-value as the proportion of the F statistics from permuted data that are \geq the observed F statistic.

7

Permutation dist'n: Females

Permutation dist'n: Males

Ç

Another example

Are the population means the same?

By now, we know two ways of testing that:

- two-sample t-test
- ANOVA with two treatments

But do they give similar results?

ANOVA table

source	sum of squares	df	mean square
between treatments	$S_B = \sum_t n_t (\bar{Y}_{t.} - \bar{Y}_{})^2$	k – 1	$M_{\text{B}} = S_{\text{B}}/(k-1)$
within treatments	$S_W = \sum_{t}^{t} \sum_{i} (Y_{ti} - \bar{Y}_{t.})^2$	N – k	$M_W = S_W/(N-k)$
total	$S_T = \sum_t \sum_i (Y_{ti} - \bar{Y}_{})^2$	(N – 1)	

11

ANOVA for two groups

The ANOVA test statistic is M_B/M_W , with

$$M_B = n_1(\bar{Y}_1 - \bar{Y}_{..})^2 + n_2(\bar{Y}_2 - \bar{Y}_{..})^2$$

and

$$M_W = \frac{\sum_{i \, = \, 1}^{n_1} \big(Y_{1i} - \bar{Y}_1\big)^2 + \sum_{i \, = \, 1}^{n_2} \big(Y_{2i} - \bar{Y}_2\big)^2}{n_1 + n_2 - 2}$$

Two-sample t-test

The test statistic for the two sample t-test is

$$t = \frac{\bar{Y}_1 - \bar{Y}_2}{s\sqrt{1/n_1 + 1/n_2}}$$

with

$$s^2 = \frac{\sum_{i=1}^{n_1} \left(Y_{1i} - \bar{Y}_1\right)^2 + \sum_{i=1}^{n_2} \left(Y_{2i} - \bar{Y}_2\right)^2}{n_1 + n_2 - 2}$$

This also assumes equal variance within the groups!

Result

$$\frac{M_B}{M_W} = t^2$$

13

Reference distributions

If there was no difference in means, then

$$\frac{M_B}{M_W} \sim F_{1,n_1+n_2-2}$$

$$t \sim t_{n_1 + n_2 - 2}$$

Now does this mean $F_{1,n_1+n_2-2} = (t_{n_1+n_2-2})^2$?

15

A few facts

$$F_{1,k} = t_k^2$$

$$F_{k,\infty} = \frac{\chi_k^2}{k}$$

$$N(0,1)^2 = \chi_1^2 = F_{1,\infty} = t_{\infty}^2$$

F table

Underlying group dist'ns

Standard ANOVA model

Data

Data

October 100 of 100 october 100

 μ_1

The random effects model

Two different ways to describe the model:

A.
$$\mu_{\rm t} \sim \mbox{ iid N}(\mu, \sigma_{\rm A}^2)$$

$${\rm Y}_{\rm ti} = \mu_{\rm t} + \epsilon_{\rm ti} \mbox{ where } \epsilon_{\rm ti} \sim \mbox{ iid N}(0, \sigma^2)$$

B.
$$au_{t} \sim \mbox{ iid N}(0, \sigma_{A}^{2})$$

$$extbf{Y}_{ti} = \mu + au_{t} + \epsilon_{ti} \mbox{ where } \epsilon_{ti} \sim \mbox{ iid N}(0, \sigma^{2})$$

→ We add another layer of sampling.

Hypothesis testing

In the standard ANOVA model, we considered the $\mu_{\rm t}$ as fixed but unknown quantities.

We test the hypothesis $H_0: \mu_1 = \cdots = \mu_k$ using the statistics M_B/M_W from the ANOVA table and the comparing this to an F(k-1, N-k) distribution.

In the random effects model, we consider the μ_t as random draws from a normal distribution with mean μ and variance σ_A^2 .

We seek to test the hypothesis H_0 : $\sigma_A^2 = 0$ versus H_a : $\sigma_A^2 > 0$.

As it turns out, we end up with the same test statistic and same null distribution.

21

Estimation

For the random effects model it can be shown that

$$E(M_B) = \sigma^2 + n_0 \times \sigma_A^2$$

where

$$n_0 = \frac{1}{k-1} \left(N - \frac{\sum_t n_t^2}{\sum_t n_t} \right)$$

Recall also that $E(M_W) = \sigma^2$.

Thus, we may estimate σ^2 by $\hat{\sigma}^2 = M_W$.

And we may estimate σ_A^2 by $\hat{\sigma}_A^2 = (M_B - M_W)/n_0$ (provided that this is ≥ 0).

The first example

The samples sizes for the 8 families were (14, 12, 11, 10, 10, 11, 15, 9), for a total sample size of 92.

Thus, $n_0 \approx 11.45$.

For the female meioses, $M_B = 212$ and $M_W = 46$. Thus

$$\hat{\sigma}=\sqrt{46}=6.8 \tag{Note: overall sample mean = 40.3)}$$

$$\hat{\sigma}_{\rm A}=\sqrt{(212-46)/11.45}=3.81.$$

For the male meioses, $M_B = 16.3$ and $M_W = 13.2$. Thus

$$\hat{\sigma} = \sqrt{13.2} = 3.6$$
 (Note: overall sample mean = 22.8)
$$\hat{\sigma}_{\rm A} = \sqrt{(16.3-13.2)/11.45} = 0.52.$$