Example

Measurements of degredation of heme with different concentrations of hydrogen peroxide (H_2O_2) , for different species of heme.

Degradation [%]

The regression model

Let X be the predictor and Y be the response. Assume we have n observations $(x_1, y_1), \ldots, (x_n, y_n)$ from X and Y. The simple linear regression model is

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
, $\epsilon_i \sim \text{iid N}(0, \sigma^2)$.

How do we estimate β_0 , β_1 , σ^2 ?

6

Fitted values and residuals

We can write

$$\epsilon_{i} = \mathbf{y}_{i} - \beta_{0} - \beta_{1} \mathbf{x}_{i}$$

For a pair of estimates $(\hat{\beta}_0, \hat{\beta}_1)$ for (β_0, β_1) we define the fitted values as

$$\hat{\mathbf{y}}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} \mathbf{x}_{i}$$

The residuals are

$$\hat{\epsilon}_{i} = \mathbf{y}_{i} - \hat{\mathbf{y}}_{i} = \mathbf{y}_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} \mathbf{x}_{i}$$

7

Residuals

Residual sum of squares

For every pair of values for β_0 and β_1 we get a different value for the residual sum of squares.

$$RSS(\beta_0, \beta_1) = \sum_{i} (y_i - \beta_0 - \beta_1 x_i)^2$$

We can look at RSS as a function of β_0 and β_1 . We try to minimize this function, i. e. we try to find

$$(\hat{\beta}_0, \hat{\beta}_1) = \min_{\beta_0, \beta_1} RSS(\beta_0, \beta_1)$$

Hardly surprising, this method is called least squares estimation.

9

Residual sum of squares

Residual sum of squares

11

Notation

Assume we have n observations: $(x_1, y_1), \dots, (x_n, y_n)$.

$$\begin{split} \bar{x} &= \frac{\sum_i x_i}{n} \\ \bar{y} &= \frac{\sum_i y_i}{n} \\ SXX &= \sum_i (x_i - \bar{x})^2 = \sum_i x_i^2 - n(\bar{x})^2 \\ SYY &= \sum_i (y_i - \bar{y})^2 = \sum_i y_i^2 - n(\bar{y})^2 \\ SXY &= \sum_i (x_i - \bar{x})(y_i - \bar{y}) = \sum_i x_i y_i - n\bar{x}\bar{y} \\ RSS &= \sum_i (y_i - \hat{y}_i)^2 = \sum_i \hat{\epsilon}_i^2 \end{split}$$

Parameter estimates

The function

$$RSS(\beta_0, \beta_1) = \sum_{i} (y_i - \beta_0 - \beta_1 x_i)^2$$

is minimized by

$$\hat{\beta}_1 = \frac{SXY}{SXX}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Useful to know

OSCIUI LO KITOW

Using the parameter estimates, our best guess for any y given x is

$$y = \hat{\beta}_0 + \hat{\beta}_1 x$$

Hence

$$\hat{\beta}_0 + \hat{\beta}_1 \bar{\mathbf{x}} = \bar{\mathbf{y}} - \hat{\beta}_1 \bar{\mathbf{x}} + \hat{\beta}_1 \bar{\mathbf{x}} = \bar{\mathbf{y}}$$

That means every regression line goes through the point (\bar{x}, \bar{y}) .

Variance estimates

As variance estimate we use

$$\hat{\sigma}^2 = \frac{RSS}{n-2}$$

This quantity is called the residual mean square. It has the property

$$(n-2) imes rac{\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-2}$$

In particular, this implies

$$\mathsf{E}(\hat{\sigma}^2) = \sigma^2$$

Example

H_2O_2 concentration								
0	10	25	50					
0.3399	0.3168	0.2460	0.1535					
0.3563	0.3054	0.2618	0.1613					
0.3538	0.3174	0.2848	0.1525					

We get

$$\bar{x} = 21.25$$
, $\bar{y} = 0.27$, $SXX = 4256.25$, $SXY = -16.48$, $RSS = 0.0013$.

Therefore

$$\hat{\beta}_1 = \frac{-16.48}{4256.25} = -0.0039, \quad \hat{\beta}_0 = 0.27 - (-0.0039) \times 21.25 = 0.353,$$

$$\hat{\sigma} = \sqrt{\frac{0.0013}{12 - 2}} = 0.0115.$$

The R function Im() does all these calculations for you. And more!

Comparing models

We want to test whether $\beta_1 = 0$:

Sum of squares

Under Ha:

$$RSS = \sum_{i} (y_i - \hat{y}_i)^2 = SYY - \frac{(SXY)^2}{SXX} = SYY - \hat{\beta}_1^2 \times SXX$$

Under H₀:

$$\sum_{i} (y_{i} - \hat{\beta}_{0})^{2} = \sum_{i} (y_{i} - \bar{y})^{2} = SYY$$

Hence

$$SS_{reg} = SYY - RSS = \frac{(SXY)^2}{SXX}$$

19

ANOVA

Source	df	SS	MS	F
regression on X	1	SS_{reg}	$MS_{reg} = \frac{SS_{reg}}{1}$	$\frac{MS_{reg}}{MSE}$
residuals for full model	n – 2	RSS	$MSE = \frac{RSS}{n-2}$	
total	n – 1	SYY		

The pf3d7 data

Source	df	SS	MS	F
regression on X	1	0.06378	0.06378	484.1
residuals for full model	10	0.00131	0.00013	
total	11	0.06509		

21

Remember: The R function Im() does the calculations for you!