Fathers’ and daughters’ heights

Pearson and Lee (1906) Biometrika 2:357-462 1376 pairs

Fathers’ heights

- Mean = 67.7
- SD = 2.8

Daughters’ heights

- Mean = 63.8
- SD = 2.7

Fathers’ and daughters’ heights

- Corr = 0.52
Covariance and correlation

Let \(X \) and \(Y \) be random variables with
\[
\mu_X = E(X), \mu_Y = E(Y), \sigma_X = SD(X), \sigma_Y = SD(Y)
\]

For example, sample a father/daughter pair and let
\(X = \) the father’s height and \(Y = \) the daughter’s height.

Covariance \hspace{1cm} Correlation

\[
\text{cov}(X,Y) = E\{(X - \mu_X) (Y - \mu_Y)\}
\]
\[
\text{cor}(X, Y) = \frac{\text{cov}(X, Y)}{\sigma_X \sigma_Y}
\]

\text{cov}(X,Y) \text{ can be any real number.} \hspace{1cm} \text{\(-1 \leq \text{cor}(X, Y) \leq 1\)}

Examples
Consider n pairs of data: $(x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots, (x_n, y_n)$

We consider these as independent draws from some bivariate distribution.

We estimate the correlation in the underlying distribution by:

$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$

This is sometimes called the correlation coefficient.

Correlation measures linear association

All three plots have correlation ≈ 0.7!
Fathers’ and daughters’ heights

Fathers’ heights
mean = 67.7
SD = 2.8

Daughters’ heights
mean = 63.8
SD = 2.7

Pearson and Lee (1906) Biometrika 2:357-462
1376 pairs

Fathers’ and daughters’ heights

corr = 0.52
Regression line

\[\text{Slope} = r \times \frac{\text{SD}(Y)}{\text{SD}(X)} \]

SD line

\[\text{Slope} = \frac{\text{SD}(Y)}{\text{SD}(X)} \]
Both lines go through the point \((X, Y)\).

Predicting father’s ht from daughter’s ht
Predicting father’s ht from daughter’s ht

Father's height (inches)

Daughter's height (inches)
There are two regression lines!

There are two regression lines!

The regression lines

Predicting y from x

\[
\left(\frac{y - \bar{y}}{s_y} \right) = r \times \left(\frac{x - \bar{x}}{s_x} \right)
\]

Predicting x from y

\[
\left(\frac{x - \bar{x}}{s_x} \right) = r \times \left(\frac{y - \bar{y}}{s_y} \right)
\]
The regression effect

• Tall fathers have, on average, daughters who are not so tall.
• Short fathers have, on average, daughters who are not so short.
• Tall daughters have, on average, fathers who are not so tall.
• Short daughters have, on average, fathers who are not so short.

The regression fallacy

The regression fallacy: Ascribing important meaning to the regression effect.

Example: the “sophomore slump”

Also think:

Exam grade = skill + luck