Fathers' and daughters' heights

Fathers' heights

Daughters' heights

Pearson and Lee (1906) Biometrika 2:357-462

1376 pairs

Fathers' and daughters' heights

Covariance and correlation

Let X and Y be random variables with

$$\mu_X = E(X), \ \mu_Y = E(Y), \ \sigma_X = SD(X), \ \sigma_Y = SD(Y)$$

For example, sample a father/daughter pair and let X =the father's height and Y =the daughter's height.

Covariance

Correlation

$$cov(X,Y) = E\{(X - \mu_X) (Y - \mu_Y)\}$$

$$cor(X, Y) = \frac{cov(X, Y)}{\sigma_X \sigma_Y}$$

cov(X,Y) can be any real number.

$$-1 \le cor(X, Y) \le 1$$

Examples

3

Estimated correlation

Consider n pairs of data: $(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots, (x_n, y_n)$

We consider these as independent draws from some bivariate distribution.

We estimate the correlation in the underlying distribution by:

$$r = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_i (x_i - \bar{x})^2 \ \sum_i (y_i - \bar{y})^2}}$$

This is sometimes called the correlation coefficient.

Correlation measures linear association

All three plots have correlation $\approx 0.7!$

5

Fathers' and daughters' heights

Fathers' heights

Daughters' heights

Pearson and Lee (1906) Biometrika 2:357-462

1376 pairs

Fathers' and daughters' heights

Linear regression

(

Linear regression

Regression line

 $Slope = r \times SD(Y) / SD(X)$

11

SD line

SD line vs regression line

Both lines go through the point (\bar{X}, \bar{Y}) .

13

Predicting father's ht from daughter's ht

Predicting father's ht from daughter's ht

15

Predicting father's ht from daughter's ht

There are two regression lines!

17

The regression lines

Predicting y from x

$$\left(\frac{y-\bar{y}}{s_y}\right)=r\times\left(\frac{x-\bar{x}}{s_x}\right)$$

Predicting x from y

$$\left(\frac{x-\bar{x}}{s_x}\right)=r\times\left(\frac{y-\bar{y}}{s_y}\right)$$

The regression effect

- Tall fathers have, on average, daughters who are not so tall.
- Short fathers have, on average, daughters who are not so short.
- Tall daughters have, on average, fathers who are not so tall.
- Short daughters have, on average, fathers who are not so short.

The regression fallacy

The regression fallacy: Ascribing important meaning to the regression effect.

Example: the "sophomore slump"

Also think:

Exam grade = skill + luck

19