
Estimating the mean response
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We can use the regression results to predict the expected response for a new
concentration of hydrogen peroxide. But what is its variability?

1

Variability of the mean response

Let ŷ be the predicted mean for some x, i. e.

ŷ = β̂0 + β̂1x

Then

E(ŷ) = β0 + β1 x

var(ŷ) = σ2

(
1
n

+
(x− x̄)2

SXX

)

where y is the true mean response.
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Why?

E(ŷ) = E(β̂0 + β̂1 x)

= E(β̂0) + x E(β̂1)

= β0 + x β1

var(ŷ) = var(β̂0 + β̂1 x)

= var(β̂0) + var(β̂1 x) + 2 cov(β̂0, β̂1 x)

= var(β̂0) + x2 var(β̂1) + 2 x cov(β̂0, β̂1)

= σ2

(
1
n

+
x̄2

SXX

)
+ σ2

(
x2

SXX

)
− 2 x x̄ σ2

SXX

= σ2
[

1
n

+
(x− x̄)2

SXX

]
3

Confidence intervals

Hence

ŷ ± t(1 – α
2),n – 2 × σ̂ ×

√
1
n

+
(x− x̄)2

SXX

is a (1 – α)×100% confidence interval for the mean response given
x.
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5

Prediction

Now assume that we want to calculate an interval for the predicted
response y? for a value of x.

There are two sources of uncertainty:

(a) the mean response

(b) the natural variation σ2

The variance of ŷ? is

var(ŷ?) = σ2 + σ2

(
1
n

+
(x− x̄)2

SXX

)
= σ2

(
1 +

1
n

+
(x− x̄)2

SXX

)
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Prediction intervals

Hence

ŷ? ± t(1 – α
2),n – 2 × σ̂ ×

√
1 +

1
n

+
(x− x̄)2

SXX

is a (1 – α)×100% prediction interval for the predicted response
given x.

Note: When n is very large, we get just

ŷ? ± t(1 – α
2),n – 2 × σ̂

7
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Span and height
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With just 100 individuals
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Regression for calibration

That prediction interval is for the case that the x’s are known without
error while

y = β0 + β1 x + ε where ε = error

A more common situation:

We have a number of pairs (x,y) to get a calibration line/curve.
x’s basically without error; y’s have measurement error

We obtain a new value, y?, and want to estimate the
corresponding x?.

y? = β0 + β1 x? + ε

11

Example
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Another example
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Regression for calibration

Data: (xi,yi) for i = 1,. . . ,n
with yi = β0 + β1 xi + εi, εi ∼ iid Normal(0, σ)

y?
j for j = 1,. . . ,m

with y?
j = β0 + β1 x? + ε?

j , ε?
j ∼ iid Normal(0, σ)

for some x?

Goal: Estimate x? and give a 95% confidence interval.

The estimate: Obtain β̂0 and β̂1 by regressing the yi on the xi.

Let x̂? = (ȳ? − β̂0)/β̂1 where ȳ? =
∑

j y
?
j /m
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95% CI for x̂?

Let T denote the 97.5th percentile of the t distr’n with n–2 d.f.

Let g = T / [|β̂1| / (σ̂/
√

SXX)] = (T σ̂) / (|β̂1|
√

SXX)

If g ≥ 1, we would fail to reject H0 : β1 = 0!
In this case, the 95% CI for x̂? is (−∞,∞).

If g < 1, our 95% CI is the following:

x̂? ±
(x̂? − x̄) g2 + (T σ̂ / |β̂1|)

√
(x̂? − x̄)2/SXX + (1− g2) ( 1

m + 1
n)

1− g2

For very large n, this reduces to x̂? ± (T σ̂) / (|β̂1|
√

m)
15

Example
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Another example
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Infinite m
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Infinite n
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