Estimating the mean response

We can use the regression results to predict the expected response for a new concentration of hydrogen peroxide. But what is its variability?

Variability of the mean response

Let \hat{y} be the predicted mean for some x, i. e.

$$\hat{\mathbf{y}} = \hat{\beta}_0 + \hat{\beta}_1 \mathbf{x}$$

Then

$$\mathsf{E}(\hat{\mathsf{y}}) = \beta_0 + \beta_1 \, \mathsf{x}$$

$$var(\hat{y}) = \sigma^2 \left(\frac{1}{n} + \frac{(x - \bar{x})^2}{SXX} \right)$$

where y is the true mean response.

Why?

$$E(\hat{\mathbf{y}}) = E(\hat{\beta}_0 + \hat{\beta}_1 \mathbf{x})$$

$$= E(\hat{\beta}_0) + \mathbf{x} E(\hat{\beta}_1)$$

$$= \beta_0 + \mathbf{x} \beta_1$$

$$\begin{aligned} \text{var}(\hat{\mathbf{y}}) &= \text{var}(\hat{\beta}_0 + \hat{\beta}_1 \, \mathbf{x}) \\ &= \text{var}(\hat{\beta}_0) + \text{var}(\hat{\beta}_1 \, \mathbf{x}) + 2 \operatorname{cov}(\hat{\beta}_0, \hat{\beta}_1 \, \mathbf{x}) \\ &= \text{var}(\hat{\beta}_0) + \mathbf{x}^2 \operatorname{var}(\hat{\beta}_1) + 2 \operatorname{x} \operatorname{cov}(\hat{\beta}_0, \hat{\beta}_1) \\ &= \sigma^2 \left(\frac{1}{n} + \frac{\bar{\mathbf{x}}^2}{SXX} \right) + \sigma^2 \left(\frac{\mathbf{x}^2}{SXX} \right) - \frac{2 \operatorname{x} \bar{\mathbf{x}} \, \sigma^2}{SXX} \\ &= \sigma^2 \left[\frac{1}{n} + \frac{(\mathbf{x} - \bar{\mathbf{x}})^2}{SXX} \right] \end{aligned}$$

3

Confidence intervals

Hence

$$\hat{y} \ \pm \ t_{(1-\frac{\alpha}{2}),n-2} \times \hat{\sigma} \times \sqrt{\frac{1}{n} + \frac{(x-\bar{x})^2}{SXX}}$$

is a $(1 - \alpha) \times 100\%$ confidence interval for the mean response given x.

pf3d7 - 95% confidence limits for the mean response

5

Prediction

Now assume that we want to calculate an interval for the predicted response y^* for a value of x.

There are two sources of uncertainty:

- (a) the mean response
- (b) the natural variation σ^2

The variance of \hat{y}^* is

$$var(\hat{y}^*) = \sigma^2 + \sigma^2 \left(\frac{1}{n} + \frac{(x - \bar{x})^2}{SXX} \right) = \sigma^2 \left(1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{SXX} \right)$$

Prediction intervals

Hence

$$\hat{y}^{\star} \ \pm \ t_{(1-\frac{\alpha}{2}),n-2} \times \hat{\sigma} \times \sqrt{1+\frac{1}{n}+\frac{(x-\bar{x})^2}{SXX}}$$

is a $(1 - \alpha) \times 100\%$ prediction interval for the predicted response given x.

Note: When n is very large, we get just

$$\hat{\mathbf{y}}^{\star} \pm \mathbf{t}_{(1-\frac{\alpha}{2}),n-2} \times \hat{\sigma}$$

7

pf3d7

Span and height

With just 100 individuals

ć

Regression for calibration

That prediction interval is for the case that the x's are known without error while

$$y = \beta_0 + \beta_1 x + \epsilon$$
 where $\epsilon = error$

A more common situation:

We have a number of pairs (x,y) to get a calibration line/curve. x's basically without error; y's have measurement error

We obtain a new value, y^* , and want to estimate the corresponding x^* .

$$\mathbf{y}^{\star} = \beta_0 + \beta_1 \, \mathbf{x}^{\star} + \epsilon$$

11

Example

Another example

Regression for calibration

Data:
$$(x_i,y_i)$$
 for $i=1,\ldots,n$
with $y_i=\beta_0+\beta_1\,x_i+\epsilon_i$, $\epsilon_i\sim \text{ iid Normal}(0,\sigma)$
 y_j^\star for $j=1,\ldots,m$
with $y_j^\star=\beta_0+\beta_1\,x^\star+\epsilon_j^\star$, $\epsilon_j^\star\sim \text{ iid Normal}(0,\sigma)$
for some x^\star

Goal: Estimate x* and give a 95% confidence interval.

The estimate: Obtain $\hat{\beta}_0$ and $\hat{\beta}_1$ by regressing the y_i on the x_i .

Let
$$\hat{x}^{\star} = (\bar{y}^{\star} - \hat{\beta}_0)/\hat{\beta}_1$$
 where $\bar{y}^{\star} = \sum_j y_j^{\star}/m$

95% CI for x*

Let T denote the 97.5th percentile of the t distr'n with n-2 d.f.

Let
$$g = T / [|\hat{\beta}_1| / (\hat{\sigma}/\sqrt{SXX})] = (T \hat{\sigma}) / (|\hat{\beta}_1| \sqrt{SXX})$$

If $g \ge 1$, we would fail to reject $H_0: \beta_1 = 0!$ In this case, the 95% CI for \hat{x}^* is $(-\infty, \infty)$.

If g < 1, our 95% CI is the following:

$$\hat{x}^{\star} \pm \frac{(\hat{x}^{\star} - \bar{x})\,g^2 + (T\,\hat{\sigma}\,/\,|\hat{\beta}_1|)\sqrt{(\hat{x}^{\star} - \bar{x})^2/SXX + (1-g^2)\,(\frac{1}{m} + \frac{1}{n})}}{1-g^2}$$

For very large n, this reduces to $\hat{\mathbf{x}}^* \pm (\mathsf{T}\,\hat{\sigma}) / (|\hat{\beta}_1|\sqrt{\mathsf{m}})$

15

Example

Another example

Infinite m

Infinite n

