1. 10.50 (pg 433)

(a) We refer to a χ^2 distribution with $(3-1) \times (3-1) = 4$ degrees of freedom. The critical value for $\alpha = 0.01$ (from Table 9) is 13.28, and so we reject the null hypothesis and conclude that the treatment influences claw configuration. The P-value (from Table 9) is < 0.0001. With R, we find that the p-value is about 0.00002. (I used $1 - \text{pchisq}(24.36, 3)$.)

(b) The expected counts under the null hypothesis are as follows:

<table>
<thead>
<tr>
<th>Claw configuration</th>
<th>Right Crusher, Left Cutter</th>
<th>Right Cutter, Left Crusher</th>
<th>Right Cutter, Left Cutter</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oyster chips</td>
<td>4.6</td>
<td>5.9</td>
<td>7.5</td>
<td>18</td>
</tr>
<tr>
<td>Smooth plastic</td>
<td>6.6</td>
<td>8.5</td>
<td>10.9</td>
<td>26</td>
</tr>
<tr>
<td>One oyster chip</td>
<td>5.8</td>
<td>7.6</td>
<td>9.6</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>22</td>
<td>28</td>
<td>67</td>
</tr>
</tbody>
</table>

For example, the expected count for the first row, first column is $18 \times 17/67 \approx 4.6$. The χ^2 statistic is then

$$\frac{(4.6 - 8)^2}{6.8} + \frac{(5.9 - 9)^2}{5.9} + \cdots + \frac{(9.6 - 7)^2}{7} \approx 24.36$$

(c) To get the percentage distribution for each of the three treatments, we divide the numbers in each row by the row sum.

<table>
<thead>
<tr>
<th>Claw configuration</th>
<th>Right Crusher, Left Cutter</th>
<th>Right Cutter, Left Crusher</th>
<th>Right Cutter, Left Cutter</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oyster chips</td>
<td>44.4</td>
<td>50.0</td>
<td>5.6</td>
<td>100%</td>
</tr>
<tr>
<td>Smooth plastic</td>
<td>7.7</td>
<td>15.4</td>
<td>76.9</td>
<td>100%</td>
</tr>
<tr>
<td>One oyster chip</td>
<td>30.4</td>
<td>39.1</td>
<td>30.4</td>
<td>100%</td>
</tr>
</tbody>
</table>

(d) The smooth plastic treatment results in a high percentage of individuals both cutters. The oyster chips treatment results in a high percentage of individuals with a crusher.

2. 11.2 (pg 475)

(a) The overall average is $(25 \times 4 + 15 \times 3 + 19 \times 5)/(4 + 3 + 5) = 20$. The between group sum of squares is

$$4 \cdot (25 - 20)^2 + 3 \cdot (15 - 20)^2 + 5 \cdot (19 - 2)^2 = 180$$
The within group sum of squares is

\[(23-25)^2 + (29-25)^2 + (25-25)^2 + (23-25)^2 + (18-15)^2 + \cdots + (19-19)^2 = 72\]

(b) The total sum of squares is

\[(23-20)^2 + (29-20)^2 + (25-20)^2 + (23-20)^2 + (18-20)^2 + \cdots + (19-20)^2 = 252\]

And so we have 180 + 72 = 252.

(c) MS(between) = SS(between)/2 = 180/2 = 90.

MS(within) = SS(within)/9 = 72/9 = 8.

\[s_{\text{pooled}} = \sqrt{\text{MS(between)}} = \sqrt{8} \approx 2.83\]

3. 11.6 (pg 476)

(a) The completed table is the following.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between groups</td>
<td>3</td>
<td>258</td>
<td>86.0</td>
</tr>
<tr>
<td>Within groups</td>
<td>26</td>
<td>640</td>
<td>24.6</td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>898</td>
<td></td>
</tr>
</tbody>
</table>

(We fill in df and SS so that between + within = total; we calculate MS = SS/df just for the between and within rows.)

(b) The number of groups must be 3+1 = 4.

(c) The total number of observations must be 29+1 = 30.

4. 11.8 (pg 481)

(a) The null hypothesis appears to be false. MAO activity appears higher for diagnosis I (chronic undifferentiated schizophrenic).

(b) The ANOVA table is as follows.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between groups</td>
<td>2</td>
<td>136.12</td>
<td>68.06</td>
<td>6.35</td>
<td>0.004</td>
</tr>
<tr>
<td>Within groups</td>
<td>39</td>
<td>418.25</td>
<td>10.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>41</td>
<td>554.37</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If we use Table 10 (looking at 2 and 40 df; 40 being close to 39) to get at the P-value, we’d find that the observed F statistic falls between 5.18 and 8.25, and so the P-value is between 0.001 and 0.01. Or we could use R by typing \[1 - pf(6.35, 2, 39)\].

With \(\alpha = 0.05\), we reject the null hypothesis and conclude that there are differences among the three groups.
5. Regarding the genenstein data, we read the data in as follows.

```
dat <- read.csv("http://www.biostat.wisc.edu/~kbroman/teaching/stat371/genenstein.csv")
```

The column with the treatment groups is called `genenstein`. The column with the responses is called `response`.

(a) We can create the stripchart as follows.

```
stripchart(response ~ genenstein, data=dat, method="jitter", pch=1)
```

I use `method="jitter"` to jitter the points vertically. I use `pch=1` to get circles rather than squares (`pch = “plot character”`).

Here’s the plot.

(b) The anova table is calculated as follows.

```
summary(aov(response ~ genenstein, data=dat))
```

We obtain the following results.

```
Df  Sum Sq Mean Sq F value  Pr(>F)
genenstein 2   21.06 10.53  1.1065 0.3376
Residuals 58  551.89  9.52
```

Note particularly that the degrees of freedom for `genenstein` (for the between-group differences) is 2. If your results have 1, then `genenstein` was not being treated as a `factor`, and you would need to type

```
dat$genenstein <- as.factor(dat$genenstein)
```

and re-run the ANOVA.

(c) Our conclusion: with $P \approx 34\%$, we fail to reject the null hypothesis (of a difference among the treatment groups). We the data provide insufficient evidence to conclude that genenstein is prevents cataract.