Permutation tests

Data: \((x, y)_i\) for \(i = 1, \ldots, n\)

Question: Are the \(x\)'s and \(y\)'s associated?

Statistic: \(T(x, y)\) (\(T\) large \(\Rightarrow\) association)

Permutation distribution:
Look at the distribution of \(T(x^*, y)\)
where \(x^*\) is a permuted version of \(x\).
P-value = \(\Pr [T(x^*, y) > T(x, y)]\)

Important issues:

- Sampling vs systematic enumeration
- Choice of test statistic
- Conditional vs unconditional test
 See Lehmann (1986) TSH, 2nd ed, chapter 10
- Normal approximation (esp for ANOVA)

Example

```r
y <- c(28, 28, 32, ...)
x <- factor(c(1,1,1, ..., 2, ..., 8, ...))

f <- anova(aov(y ~ x))$F[1]

f0 <- 1:1000
for(i in 1:1000)
  f0[i] <- anova(aov(y ~ sample(x)))$F[1]

mean(f0 > f)
```
Parametric bootstrap

Suppose \(x_1, x_2, \ldots, x_n \sim \text{iid } f(\cdot, \theta) \) where \(f \) is known.

Let \(\hat{\theta} = \hat{\theta}(x) \) be our estimator of \(\theta \) (eg, the MLE).

We wish to estimate the SE of \(\hat{\theta} \) and get a confidence interval for \(\theta \).

Parametric bootstrap:

1. Simulate \(x_1^*, x_2^*, \ldots, x_n^* \sim \text{iid } f(\cdot, \hat{\theta}) \).
2. Obtain \(\hat{\theta}^* = \hat{\theta}(x^*) \)
3. Repeat steps (1) and (2) \(m \) times to obtain \(\hat{\theta}_1^*, \hat{\theta}_2^*, \ldots, \hat{\theta}_m^* \)
4. Estimate SE(\(\hat{\theta} \)) by SD\{\(\hat{\theta}_i^* \}\}
5. Estimate the bias of \(\hat{\theta} \) by \(\hat{\theta} - \text{ave}\{\hat{\theta}_i^*\} \)
6. Calculate the confidence interval for \(\theta \) by either

 (a) 2.5\%ile to 97.5\%ile of \{\(\hat{\theta}_i^* \}\}

 (b) \((\hat{\theta} - \epsilon_H, \hat{\theta} - \epsilon_L) \) where \(\epsilon_L \) and \(\epsilon_H \) are the 2.5\%ile and 97.5\%ile, respectively, of \{\(\hat{\theta} - \hat{\theta}_i^* \}\)
Est'd distribution of $\hat{\theta}$
Nonparametric bootstrap

Suppose $x_1, x_2, \ldots, x_n \sim \text{iid } f(\cdot, \theta)$ where the form f is perhaps unknown. Let $F(\cdot, \theta)$ be the corresponding cdf.

We estimate F by the empirical cdf \hat{F}_n.

Nonparametric bootstrap:

1. Simulate $x_1^*, x_2^*, \ldots, x_n^* \sim \text{iid } \hat{F}_n$. In other words, draw n values *with replacement* from the set
 \[
 \{x_1, x_2, \ldots, x_n\}
 \]
2. Obtain $\hat{\theta}^* = \hat{\theta}(x^*)$
3. Repeat steps (1) and (2) m times to obtain
 \[
 \hat{\theta}_1^*, \hat{\theta}_2^*, \ldots, \hat{\theta}_m^*
 \]
4. Everything else is as before.

Note: We may have (θ, ψ) rather than just θ (and these could all be vectors), where ψ is a nuisance parameter. But that’s really no big deal.
Example

options(digits=3)
x <- rexp(30, 2)

print(theta <- sd(x))
 0.425

parametric bootstrap
lambda <- 1/mean(x)
thetas <- 1:1000
for(i in 1:1000)
 thetas[i] <- sd(rexp(30,lambda))

 c(mean(thetas),sd(thetas))
 0.469 0.116

quantile(thetas,c(0.025,0.975))
 0.284 0.739
theta - rev(quantile(thetas-theta,
 c(0.025,0.975)))
 0.111 0.566
Example (continued)

```r
# nonparametric bootstrap
thetas2 <- 1:1000
for(i in 1:1000)
    thetas2[i] <- sd(sample(x, repl=T))

c(mean(thetas2), sd(thetas2))
    0.417 0.042
quantile(thetas2, c(0.025, 0.975))
    0.330 0.494
theta <- rev(quantile(thetas2-theta,
                        c(0.025, 0.975)))
    0.356 0.520

# Monte Carlo estimate (knowing the truth)
thetas3 <- 1:100000
for(i in 1:100000)
    thetas3[i] <- sd(rexp(30, 2))

c(mean(thetas3), sd(thetas3))
    0.486 0.120
```

Compare: \(0.5/\sqrt{30} = 0.091\)
Further issues

• How many bootstrap replicates?
 – As many as you can
 – $n = 100 - 1000$
 – Bootstrap to estimate the Monte Carlo error

• (Related to the above)
 \[\text{SE}(\hat{\theta}) \]

 versus bootstrap est \(\widehat{\text{SE}}(\hat{\theta}) \) \((n \to \infty)\)

 versus obs bootstrap est \(\text{SD}\{\hat{\theta}^*_i\}\)

• Bias correction: bias ↓ ⇒ var ↑

• Transformations

• Balanced bootstrap
Bootstrap in regression

Consider \((x_1, x_2, y)_i\) for \(i = 1, \ldots, n\).

\[
y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon
\]

\[
E(\epsilon) = 0 \quad \text{var}(\epsilon) = \sigma^2 \quad \epsilon_i \text{ independent}
\]

Approaches:

- Parametric bootstrap:
 - Obtain \(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2\)
 - Sample \(\epsilon_i^* \sim \text{iid normal}(0, \sigma^2)\)
 - Take \(y_i^* = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \epsilon_i^*\)
 - Obtain \(\hat{\beta}_0^*, \hat{\beta}_1^*, \hat{\beta}_2^*\) and repeat many times

- Nonparametric bootstrap I:
 - Obtain \(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2\)
 - Calculate \(\hat{\epsilon}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2}\)
 - Sample \(\epsilon_i^*\) by drawing with replacement from \(\{\hat{\epsilon}_i\}\)
 - Obtain \(\hat{\beta}_0^*, \hat{\beta}_1^*, \hat{\beta}_2^*\) and repeat many times
Bootstrap in regression (continued)

Approaches (continued)

• Nonparametric bootstrap II:
 – Sample \((x_1^*, x_2^*, y^*)_i \) by drawing with replacement from \((x_1, x_2, y)_i \)
 – Obtain \(\hat{\beta}_0^*, \hat{\beta}_1^*, \hat{\beta}_2^* \) and repeat many times