Optimization: Uphill simplex method

Nelder & Mead (1965) Computer Journal 7:308-313
Numerical Recipes in C, §10.4

Why mention this algorithm?

• It’s cute.
• Nelder (as in McCullagh and Nelder) is a very interesting statistician.
• The method is completely different from the others we’ve discussed (as are its convergence properties).

Other points:

• Only requires function evaluations
• Not very fast
• Requires a lot of function evaluations
• Best when you need to get something going quickly and when function evaluations are cheap

Basic description:

• Seek to maximize a function $l(\theta)$ where θ is a p-vector.
• Start with $p + 1$ points defining a simplex in p-space.
• Roll/stretch/contract the simplex through p-space to find the maximum of $l(\theta)$
Uphill simplex method (continued)

Start:
\[\theta_0 = \text{starting point} \]
\[\theta_i = \theta_o + \lambda_i e_i \]
where \(e_i \) is the unit vector in the \(i \)th direction
and \(\lambda_i \) is the scale of \(\theta_{0i} \).

Move A: (reflect and expand)
Suppose \(i^* = \arg\min_{i} l(\theta_i) \).
Replace \(\theta_{i^*} \) by reflecting it across the opposite face and
expanding by a factor of 2, to give \(\theta'_{i^*} \).
Uphill simplex method (continued)

Move B: (reflect and contract)
If \(l(\theta_i') < l(\theta_i) \):
 - Try reflecting \(\theta_i \) across the opposite face but
 contracting by a factor of 2, to give \(\theta_i'' \).

 \[\theta_2 \]

\[\theta_0 \rightarrow \theta_1 \]
\[\theta_2'' \]

Move C: (multiple contraction)
If also \(l(\theta_i'') < l(\theta_i') \):
 - Find \(i^{**} = \arg\max_i l(\theta_i) \)
 - Contract all points except \(\theta_i^{**} \) towards \(\theta_i^{**} \) by a factor
 of 2.

 \[\theta_2'' \]

 \[\theta_0 \rightarrow \theta_1 \]

Stopping criterion:
Stop when \(|l(\theta_i^{**}) - l(\theta_i)| < \left\{ |l(\theta_i^{**})| + |l(\theta_i)| \right\}/(2\epsilon) \)
 or maybe \(\max\{||\theta_i - \theta_i^{**}||\} < \epsilon \)
L_p regression

We wish find $\hat{\beta}$ minimizing $S_p(\beta) = \sum_i |y_i - x_i'\beta|^p$

for $0 < p < 2$.

Special case: when $p = 1$ we have least absolute deviations regression

IRLS method:

Note that $S_p(\beta) = \sum_i w_i(\beta)(y_i - x_i'\beta)^2$

where $w_i(\beta) = |y_i - x_i'\beta|^{p-2}$

This suggests using IRLS:

1. Find a starting point $\hat{\beta}^{(0)}$ (eg, by least squares)
2. Form the weights $w_i(\hat{\beta}^{(s)}) = |y_i - x_i'\hat{\beta}^{(s)}|^{p-2}$
3. Get new estimates $\hat{\beta}^{(s+1)}$ by using least squares with weights $w_i(\hat{\beta}^{(s)})$.

Problem: 0 residuals

Solution: Take $w_i(\beta) = \max\{\epsilon, |y_i - x_i'\beta|\}^{p-2}$

for some small ϵ (eg, 10^{-8}).

This isn’t a very stable or fast solution (though it does work, pretty much). A better solution for the case $p = 1$ will be shown later.
\textbf{L_p regression: code}

\begin{verbatim}
lp <- function(x,y,p=1,tol=1e-6,eps=1e-12,maxit=1000) {
 beta.old <- lm(y~x)$coef

 for(i in 1:maxit) {
 r <- abs(y-cbind(1,x)%*%beta.old)
 r[r < eps] <- eps
 w <- as.numeric(r^(p-2))

 beta <- lm(y~x,weights=w)$coef

 if(all(abs(beta-beta.old) <
 tol*(abs(beta.old)+tol*100))) break;

 beta.old <- beta
 }

 cat("Number of iterations:", i, \\
 "\n")
 beta
}

> print(a <- lm(y~x)$coef,dig=2)
9.26 0.30 -0.46 0.24 0.45

> unix.time(b <- lp(x,y))
Number of iterations: 41
[1] 4.33 0.52 4.91 0.00 0.00

> print(b,dig=2)
9.45 0.11 -0.44 0.29 0.51
\end{verbatim}
Constrained optimization

Maximize $l(\theta)$ for $\theta \in \Theta \subset \mathbb{R}^p$

Easiest approach:
Hope/pray that $\hat{\theta} = \arg \max_{\theta \in \mathbb{R}^p} l(\theta)$ satisfies $\hat{\theta} \in \Theta$.

Usual situation:
Maximize $l(\theta)$ subject to
- Equality constraints: $c_1(\theta) = 0, \ldots, c_E(\theta) = 0$
- Inequality constraints: $c_{E+1}(\theta) \geq 0, \ldots, c_{E+I}(\theta) \geq 0$

Linear programming:
- l and the c_j are linear in θ.

Quadratic programming:
- l is quadratic; the c_j are linear.

Nasty enough:
- l is more complex than quadratic; the c_j are linear.
LAD regression

A linear programming formulation for the case $p = 1$:

Minimize $\sum e_i^+ + \sum e_i^-$

Subject to the constraints

$$y = X\beta + e^+ - e^-$$

$$e^+ \geq 0$$

$$e^- \geq 0$$

Here we have $2n + p$ unknowns (namely β, e^+ and e^-).
Since $y_i = x_i\beta + (e_i^+ - e_i^-)$, at the solution either $e_i^+ = 0$ or $e_i^- = 0$ or both.

Efficient implementations make use of the relationships among the $2n + p$ variables.

LS w/ linear equality constraints

[Seber (1977) Linear regression analysis. Wiley. §3.9.]

Minimize \((y - X\beta)'(y - X\beta)\) with constraint \(A\beta = c\)
where \(X\) is \(n \times p\) with rank \(p\)
and \(A\) is \(q \times p\) with rank \(q < p\).

Solution using Lagrange multipliers:

Consider \(r = (y - X\beta)'(y - X\beta) + (\beta' A' - c')\lambda\)

Note that \(\partial(\beta'a)/\partial\beta = a\) and
\(\partial(\beta'W\beta)/\partial\beta = 2W\beta\) (if \(W\) is symmetric).

Thus \(\partial r/\partial\beta = 2X'y + 2X'X\beta + A'\lambda.\)

We seek \(\hat{\beta}_H\) and \(\hat{\lambda}_H\) satisfying \(A\hat{\beta}_H = c\)
and \(2X'y + 2X'X\hat{\beta}_H + A'\hat{\lambda}_H = 0.\)

\[
\hat{\beta}_H = (X'X)^{-1}X'y - (X'X)^{-1}A'\hat{\lambda}_H/2 \\
= \hat{\beta} - (X'X)^{-1}A'\hat{\lambda}_H/2 \\
c = A\hat{\beta} - A(X'X)^{-1}A'\hat{\lambda}_H/2
\]

\(\Rightarrow\) \(\hat{\lambda}_H/2 = \{A(X'X)^{-1}A'\}^{-1}(A\hat{\beta} - c)\)

\(\Rightarrow\) \(\hat{\beta}_H = \hat{\beta} + (X'X)^{-1}A'\{A(X'X)^{-1}A'\}^{-1}(c - A\hat{\beta})\)
LS w/ lin eq constraints (continued)

Three other points:
1. An interesting geometric derivation of $\hat{\beta}_H$, using projections and nullspaces, appears in Seber (1977) §3.9, and is worth looking at.

2. Since $\hat{\beta}_H = G\hat{\beta} + k$, we have $\text{var}(\hat{\beta}_H) = G \text{var}(\hat{\beta}) G'$
 Using $G = I - (X'X)^{-1}A'\{A(X'X)^{-1}A\}^{-1}A$,
 we appear to obtain $\text{var}(\hat{\beta}_H) = \sigma^2 G(X'X)^{-1}$

3. I can't remember my third point.

Example
Consider the model $y = \beta_0 + \sum_{i=1}^{4} \beta_i x_i + \epsilon$
Suppose we have the constraints $2\beta_1 = \beta_4$ and $3\beta_2 = -5\beta_3$.
Then $c = 0$ and

$$A = \begin{pmatrix} 0 & 2 & 0 & 0 & -1 \\ 0 & 0 & 3 & 5 & 0 \end{pmatrix}$$

With the data I played with above in LAD regression,
\(\hat{\beta} \approx (9.26, 0.30, -0.46, 0.24, 0.45) \) and \(\hat{\beta}_H = G\hat{\beta} \approx (9.30, 0.23, -0.45, 0.25, 0.47) \).

\(\hat{SE}(\beta) \approx (0.59, 0.14, 0.12, 0.14, 0.11) \)
\(\hat{SE}(\beta_H) \approx (0.51, 0.03, 0.12, 0.07, 0.07) \)
LS with linear inequality constraints

This is an example of quadratic programming.

Note:
A consistent set of linear inequality constraints of full rank can be reduced by reparameterization to a set of nonnegativity constraints. [Thisted, 1988]

Problem:
minimize $(y - X\beta)'(y - X\beta)$
with constraints $\beta_j \geq 0$ for $j \in J$

Algorithm:
Let $\hat{\beta}$ be the unconstr’d sol’n, $C = J \setminus \{j : \hat{\beta}_j \geq 0\}$ (the “active” constraints), and $M = \{1, \ldots, p\} \setminus J$.

The constr’d sol’n to the problem is equiv’t to the unconstr’d sol’n dropping the columns of X with $j \in C$.

Thus to solve the constrained problem, we need to find the maximal set M for which the unconstrained estimates $\hat{\beta}_j$ all satisfy the constraints.

At the worst, we may need to fit $2^{|J|}$ models. But a step-wise selection procedure can get the job done.
Example

Consider the model \(y = \beta_0 + \sum_{j=1}^{4} x_j + \epsilon \) where we constrain \(\beta_j \geq 0 \) for \(j > 0 \).

\[
\begin{align*}
> \text{lm}(y \sim x) \text{\$coef} \\
& \text{int \hspace{0.5cm} X1 \hspace{0.5cm} X2 \hspace{0.5cm} X3 \hspace{0.5cm} X4} \\
& -0.0822 \hspace{0.5cm} -0.0388 \hspace{0.5cm} 0.1221 \hspace{0.5cm} 0.0016 \hspace{0.5cm} 0.1226
\end{align*}
\]

\[
\begin{align*}
> \text{lm}(y \sim x[,,-1]) \text{\$coef} \\
& \text{int \hspace{0.5cm} X2 \hspace{0.5cm} X3 \hspace{0.5cm} X4} \\
& -0.0867 \hspace{0.5cm} 0.1071 \hspace{0.5cm} -0.0107 \hspace{0.5cm} 0.1271
\end{align*}
\]

\[
\begin{align*}
> \text{lm}(y \sim x[,,-3]) \text{\$coef} \\
& \text{int \hspace{0.5cm} X1 \hspace{0.5cm} X2 \hspace{0.5cm} X4} \\
& -0.0823 \hspace{0.5cm} -0.0384 \hspace{0.5cm} 0.1228 \hspace{0.5cm} 0.1225
\end{align*}
\]

\[
\begin{align*}
> \text{lm}(y \sim x[,,-c(1,3)]) \text{\$coef} \\
& \text{int \hspace{0.5cm} X2 \hspace{0.5cm} X4} \\
& -0.0861 \hspace{0.5cm} 0.1009 \hspace{0.5cm} 0.1289
\end{align*}
\]

The last model, with \(\hat{\beta}_1 = \hat{\beta}_3 = 0 \), is the one we choose.
Another example: Isotonic regression

Consider pairs \((x_i, y_i)\) with \(x_1 \leq x_2 \leq \ldots \leq x_n\).

Suppose \(y_i|x_i \sim \mathcal{N}(\mu_i, \sigma^2)\) with \(\mu_1 \leq \mu_2 \leq \ldots \leq \mu_n\).

→ Find \(\hat{\mu}_i\) minimizing \(\sum (y_i - \mu_i)^2\) with this constraint.

If \(y_1 \leq y_2 \leq \ldots \leq y_n\), then things are easy: \(\hat{\mu}_i = y_i\!\).

Otherwise:

1. Let \(\beta_1 = \mu_1\) and \(\beta_i = \mu_i - \mu_{i-1}\) for \(i > 1\).

 Let \(X_{ij} = 1\) if \(i \geq j\) or 0 otherwise.

 Then \(y = X\beta + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2), \ \beta_i \geq 0\) for \(i > 1\).

 Use the previously described method!

2. “Pool adjacent violators”

 See Barlow, Bartholomew, Bremner and Brunk (1972) Statistical inference under order restrictions; the theory and application of isotonic regression. Wiley.
Example

Suppose $k_{ij} \sim \text{indep Poisson}(\lambda_i)$ for $i = 1, \ldots, G$ and $j = 1, \ldots, n_i$.

$$l(\lambda|k) = -\sum_i n_i \lambda_i + \sum_i \log \lambda_i \sum_j k_{ij}$$

$$\partial l/\partial \lambda_i = -n_i + \sum_j k_{ij}/\lambda_i$$

MLE: $\hat{\lambda}_i = \sum_j k_{ij}/n_i$

Constraint: $\lambda_1 \leq \lambda_i$ for all i.

If $\hat{\lambda}_1 \leq \hat{\lambda}_i$ for all $i \rightarrow$ done!

Otherwise, suppose $\hat{\lambda}_i < \hat{\lambda}_1$ for $i \in I$.

Then $\hat{\lambda}'_1 = \sum_{i \in I \cup \{1\}} \sum_j k_{ij}/\sum_{i \in I \cup \{1\}} n_i$ and $\hat{\lambda}'_i = \hat{\lambda}'_1$ for $i \in I$
Nonquad programming w/ lin eq constr

We seek to maximize $l(\theta)$ with the constraint $A\theta = b$ where A is $q \times p$ with rank $q < p$.

Let Z be a $p \times (p - q)$ orthonormal matrix satisfying $AZ = 0$ (and $Z'Z = I$).

Basic algorithm:

1. **Start**: Pick $\hat{\theta}^{(0)}$ satisfying $A\hat{\theta}^{(0)} = b$.

2. **Steps**: Take $\hat{\theta}^{(s+1)} = \hat{\theta}^{(s)} + \alpha_s \delta_s$ where $\delta_s = Zy$ for some $(p - q)$-vector y.

Let $g^{(s)}$ and $G^{(s)}$ be the gradient and Hessian of l, respectively, evaluated at $\hat{\theta}^{(s)}$.

Steepest ascent: $\delta_s = ZZ'g^{(s)}$

Newton-Raphson: $\delta_s = -ZZ'G^{(s)}Z^{-1}Z'\hat{g}^{(s)}$

Nonquad programming w/ lin ineq constr

We seek to maximize \(l(\theta) \) with the constraint \(A\theta \geq b \)
where \(A \) is \(q \times p \) of rank \(q < p \).

The following is what is called an active set algorithm.

1. Find a starting point \(\hat{\theta}^{(0)} \) satisfying \(A\theta \geq b \). (For example, find the unconstrained maximum and project into onto the feasible set \(\{\theta : A\theta \geq b\} \).

2. Define the set of active constraints by \(C_s = \{i : a_i'\theta^{(s)} = b_i\} \) where \(a_i' \) is the \(i \)th row of \(A \).
Let \(A_s \) and \(b_s \) denote the \(A \) and \(b \) with the inactive constraints dropped.

3. Consider dropping a constraint from the active set.

4. Compute a feasible direction, \(\delta_s = Z_s y \) where \(A_s Z_s = 0 \) and \(Z_s' Z_s = I \), as if we were maximizing \(l(\theta) \) with just the active constraints \(A_s \theta = b_s \).

5. Calculate \(\bar{\alpha}_s \), the maximum value of \(\alpha \) such that \(A(\hat{\theta}^{(s)} + \alpha \delta_s) \geq b \)
Find \(0 < \alpha_s \leq \bar{\alpha}_s \) so that \(l(\hat{\theta}^{(s)} + \alpha_s \delta_s) > l(\hat{\theta}^{(s)}) \).

6. Take \(\hat{\theta}^{(s+1)} = \hat{\theta}^{(s)} + \alpha_s \delta_s \).

7. If \(\alpha_s = \bar{\alpha}_s \), add the corresponding inactive constraint to the active set.