Numerical integration

To be fancy, our topic is *quadrature*.

We seek \(I = \int_a^b f(x) \, dx \).

Method 1: The extended midpoint rule

1. Pick \(N \) large.
2. Let \(x_i = a + (i - 1/2)h, \ h = (b - a)/N, \) for \(i = 1, \ldots, N \).
3. Let \(f_i = f(x_i) \)
4. Then \(I \approx h \sum_i f_i \)

Sample code:

```r
emr <-
function(f,a,b,n=1000)
{
    h <- (b-a)/n
    h*sum(f( seq(a+h/2, b, by=h )))
}
```

Points:

- This is the simplest thing to do
- Error \(O(1/N^2) \)
- Don’t use this in production
The basics

In the following, we consider $x_0, x_1, \ldots x_N$ such that $x_i = x_0 + ih$, and write $f_i = f(x_i)$.

Note: The common choice is $x_0 = a$ and $h = (b - a)/N$, so that $x_N = b$.

Closed formula: use x_0, x_N

Open formula: don’t use x_0, x_N (e.g., when it’s hard to calculate f at one of a or b)

Basic rules

Trapezoidal rule: \[\int_{x_0}^{x_1} f(x) \, dx \approx h\left\{ \frac{1}{2} f_0 + \frac{1}{2} f_1 \right\} \]

Simpson’s rule: \[\int_{x_0}^{x_2} f(x) \, dx \approx h\left\{ \frac{1}{3} f_0 + \frac{4}{3} f_1 + \frac{1}{3} f_2 \right\} \]

Extrapolation formulas: \[\int_{x_0}^{x_1} f(x) \, dx \approx h\{f_1\} \]
\[\int_{x_0}^{x_1} f(x) \, dx \approx h\left\{ \frac{3}{2} f_1 - \frac{1}{2} f_2 \right\} \]
\[\int_{x_0}^{x_1} f(x) \, dx \approx h\left\{ \frac{23}{12} f_1 - \frac{16}{12} f_2 + \frac{5}{12} f_3 \right\} \]
The basics (continued)

Extended trapezoidal rule (closed)

\[
\int_a^b f(x) \, dx = h\left\{\frac{1}{2}f_0 + f_1 + f_2 + \ldots + f_{N-1} + \frac{1}{2}f_N\right\} + O\left(\frac{1}{N^2}\right)
\]

Extended Simpson’s rule (closed)

\[
\int_a^b f(x) \, dx = h\left\{\frac{1}{3}f_0 + \frac{4}{3}f_1 + \frac{2}{3}f_2 + \frac{4}{3}f_3 + \ldots \right. \\
\left. + \frac{2}{3}f_{N-2} + \frac{4}{3}f_{N-1} + \frac{1}{3}f_N\right\} + O\left(\frac{1}{N^4}\right)
\]

Extended trapezoidal rule (open)

\[
\int_a^b f(x) \, dx = h\left\{\frac{3}{2}f_1 + f_2 + \ldots + f_{N-2} + \frac{3}{2}f_{N-1}\right\} + O\left(\frac{1}{N^2}\right)
\]

Extended Simpson’s rule (open)

\[
\int_a^b f(x) \, dx = h\left\{\frac{27}{12}f_1 + 0 + \frac{13}{12}f_3 + \frac{4}{3}f_4 + \frac{2}{3}f_5 + \ldots \right. \\
\left. + \frac{4}{3}f_{N-4} + \frac{13}{12}f_{N-3} + 0 + \frac{27}{12}f_{N-1}\right\} + O\left(\frac{1}{N^4}\right)
\]
Trapezoidal rule: Implementation

An important point regarding the trapezoidal rule: to go from \(N \) to \(2N \), you can make use of your previous work.

We make use of the following basic engine for the trapezoidal rule. I assume that the function \(f \) is vectorized and that \(n \) is a power of 2.

```r
subtrap <-
function(f,a,b,n=1)
{
  h <- (b-a)/n
  if(n==1) return( h*mean( f(c(a,b)) ) )
  else return(h*sum( f(seq(a+h,b,by=2*h)) ))
}
```

We use the above function by taking \(I_{i+1} = \frac{1}{2}I_i + S_{i+1} \), where \(S_i \) is the output from the function \(\text{subtrap} \) and \(I_i \) is the estimated integral using \(N = 2^{i-1} \) steps.

```r
trap <-
function(f,a,b,tol=1e-8,maxit=1000)
{
  i.old <- subtrap(f,a,b,1); n <- 2
  for(i in 2:maxit) {
    s <- subtrap(f,a,b,n)
    i.new <- i.old/2 + s
    if(abs(i.new-i.old) < tol) break
    i.old <- i.new
    n <- n*2
  }
  i.new
}
```
Simpson’s rule: Implementation

It is interesting to note that you can use the subtrap function to obtain Simpson’s rule.

Let S_i be the output from subtrap with $N = 2^i - 1$, and let I_i be our estimate of the integral at step i.

For Simpson’s rule, we take $I_1 = 2S_1/3$ and then $I_{i+1} = I_i/2 + (4S_{i+1} - S_i)/3$.

```r
simp <-
function(f,a,b,tol=1e-8,maxit=1000) {
  i.old <- subtrap(f,a,b,1)*2/3
  n <- 2; old.s <- 0
  for(i in 2:maxit) {
    s <- subtrap(f,a,b,n)
    i.new <- (i.old/2 + (4*s - old.s)/3)
    if(abs(i.new-i.old) < tol) break
    i.old <- i.new; old.s <- s
    n <- n*2
  }
  i.new
}
```

Consider the example $\int_0^2 x^2(1 - x)\sin(x^2) \, dx$.

With tol=1e-8, Simpson’s rule uses $N = 512$ while the trapezoidal rule uses $N = 512 \times 128$.
Further explanation

Let $S(h)$ and $T(h)$ denote the approximations from Simpson’s rule and the trapezoidal rule, respectively.

Then $S(h) = \frac{1}{3}\{4T(h) - T(2h)\}$

The subtrap function provides $X(h) = T(h) - \frac{1}{2}T(2h)$.

Thus $S(h) = \frac{1}{3}\{4T(h) - T(2h)\}$

$$= \frac{1}{3}\left\{[2T(2h) - \frac{1}{2}T(4h)] + [4T(h) - 2T(2h)] - [T(2h) + \frac{1}{2}T(4h)]\right\}$$

$$= \frac{1}{2} \cdot \frac{1}{3}\{4T(2h) - T(4h)\} + \frac{4}{3}\{T(h) - \frac{1}{2}T(2h)\} - \frac{1}{3}\{T(2h) - \frac{1}{2}T(4h)\}$$

$$= \frac{1}{2}S(2h) + \frac{1}{3}\{4X(h) - X(2h)\}$$
Romberg’s algorithm

Simpson’s rule combines $T(h)$ and $T(2h)$ in a way that some error terms are cancelled. In Romberg’s algorithm, this method is continued.

If the function being integrated is sufficiently smooth, impressive gains are obtained.

Let $T_{m0} = T[(b - a)2^{-m}]$ and define

$$T_{mn} = \frac{4^n T_{m,n-1} - T_{m-1,n-1}}{4^n - 1}$$

$$= T_{m,n-1} - \frac{1}{4^n - 1}\{T_{m-1,n-1} - T_{m,n-1}\}$$

The Romberg matrix:

$$
\begin{pmatrix}
T_{00} \\
T_{10} & T_{11} \\
T_{20} & T_{21} & T_{22} \\
T_{30} & T_{31} & T_{32} & T_{33} \\
& & & \\
\vdots & \vdots & \vdots & \vdots \\
\end{pmatrix}
$$

Recall that if X_i is the value from the ith call to `trap`, $T_{00} = X_1$ and $T_{i0} = X_{i+1} + \frac{1}{2}T_{i-1,0}$.
Improper integrals

The above methods need to be revised in the case that
1. The integrand goes to a finite limit at finite upper and lower limits, but cannot be calculated right on one of the limits (e.g., $\sin x/x$ at $x = 0$).
2. The upper limit of integration is ∞ or the lower limit is $-\infty$.
3. There is a singularity at either limit (e.g., $x^{-1/2}$ at $x = 0$).
4. There is a singularity at a known spot between the limits.

Solution: Replace the function `subtrap` with a version of the extended midpoint rule, tripling N at each call.

\[
\begin{align*}
N = 3^0 \\
N = 3^1 \\
N = 3^2
\end{align*}
\]

Use code like
\[
x \leftarrow c(seq(a+h/2,b,by=3*h), seq(a+2.5*h,b,by=3*h))
\]
We can easily revise `trap` and `simp` to use this. We thus solve issue 1.
Improper integrals (continued)

To solve the other issues, we use two techniques:

1. Change of variables.
2. Break up the integral into pieces

For example, if \(a > 0 \) and \(f(t) \to 0 \) faster than \(1/t^2 \to 0 \) as \(t \to \infty \), then we can use \(u = 1/t \) as follows:

\[
\int_a^\infty f(t) \, dt = \int_0^{1/a} \frac{1}{u^2} f\left(\frac{1}{u}\right) \, du
\]

This also works if \(b < 0 \) and the lower limit is \(-\infty\).

I think that's enough on that; you can see the general direction. See Lange §.* for additional advice and examples.
Gaussian quadrature

The amazingly cool technique of Gaussian quadrature is appropriate when we wish to integrate $f(x)$ against a probability measure μ.

For fixed points x_i and positive weights w_i,

$$\int_{-\infty}^{\infty} f(x) \, d\mu(x) \approx \sum_{i=0}^{k} w_i f(x_i)$$

For the trapezoidal rule, $\mu = \text{uniform}(a, b)$ and the x_i are uniformly spaced. Generally, μ is non-uniform and the x_i cluster in regions of high probability.

If μ possesses an orthonormal polynomial sequence $\psi_n(x)$ for $n = 0, 1, 2, \ldots$, then x_0, x_1, \ldots, x_k are the roots of $\psi_{k+1}(x)$.

Fact: If μ is not concentrated at a finite number of points, then the roots $\{x_i\}$ are real and distinct, and there exist positive weights w_i such that the quadrature formula above is exact when $f(x)$ is a polynomial of degree $\leq 2k + 1$.
Orthonominal polynomials (continued)

Consider the inner product

\[< f, g > = \int_{-\infty}^{\infty} f(x)g(x) \, d\mu(x) \]

The orthonominal polynomials mentioned above satisfy

\[< p_i, p_j > = \delta_{ij} \quad (\text{i.e., } = 0 \text{ if } i \neq j \text{ and } = 1 \text{ if } i = j) \]

They can be constructed as follows:

Take \(p_{-1}(x) = 0 \) and \(p_0(x) = 1 \).

For \(j \geq 0 \), let \(q_{j+1} = (x - a_j)p_j(x) - b_jp_{j-1}(x) \)

and let \(p_j = q_j / \sqrt{< q_j, q_j >} \)

My recommendation: if you come across an integral of the form \(\int f(x) \, d\mu(x) \), consider using Gaussian quadrature, and check out *Numerical Recipes in C*, §3.3.*.

Rather than calculating the abscissas \(x_i \) and weights \(w_i \), you may wish to pull them from tables (in an old and dusty book).
Example 1

[Chakravarti et al., Genetics 128:175–182, 1991]

Suppose a genome consists of k chromosomes of common length L, and that we have typed m markers on a set of fully informative offspring. Let $G = kL$ be the genome length.

Let n_{ij} be the number of meioses typed on both markers i and j and r_{ij} be the number of recombinants observed.

We assume (falsely) no interference and (even more falsely) that the pairs are independent, and wish to estimate L (and hence G).

Log likelihood:

$$l(L) = \sum_{i \neq j} \log \left\{ \int_0^{\theta'} \theta^r_{ij} (1 - \theta)^{n_{ij} - r_{ij}} f(\theta; L) \, d\theta + (k - 1)(1/2)^{n_{ij}} \right\}$$

where $\theta' = (1 - e^{-2L})/2$ (i.e., the maximum recombination fraction for a chromosome of length L) and

$$f(\theta; L) = \left\{ 2L + \log(1 - 2\theta) \right\} / \left\{ L^2(1 - 2\theta) \right\}.$$

We need to calculate that integral (and then maximize l with respect to L, to get the MLE \hat{L}).

Major problem: The integral can be really small, hence we have a problem with underflow.
Example 1 (continued)

The trick:

Let $g_i = \log f_i$. Suppose we wish to calculate $\log(f_1 + f_2)$.

Then

$$\log(f_1 + f_2) = \log(e^{g_1} + e^{g_2})$$

$$= \log\{e^{g_1}(1 + e^{g_2-g_1})\}$$

$$= g_1 + \log(1 + e^{g_2-g_1})$$

“Obviously,” a problem occurs when $g_2 \gg g_1$, in which case $\log(f_1 + f_2) \approx g_2$, but the above formula will result in an overflow. Thus, I recommend the following:

```r
addlog <- function(a, b, thresh=200) {
    if(b > a + thresh) return(b)
    else if(a > b + thresh) return(a)
    else return(a + log(1+exp(b-a)))
}
```

Note that one may also want a function subtractlog().

We can modify any code to do numerical integration, to calculate $\log\{\int_a^b f(x) \, dx\}$ working only with $\log f(x)$. This will avoid the underflow problem.

To calculate $S = \log \sum_{i=1}^n f_i$, use

$S_1 = g_1$, $S_{i+1} = \text{addlog}(S_i, g_{i+1})$
Example 2

Suppose we observe vectors \(y_1, y_2, \ldots, y_N \), the realizations of a thinned stationary gamma renewal process on the interval \([0, L]\) (where \(L \) is known), with shape parameter \(\nu \). We seek to estimate \(\nu \).

Let’s focus on a single realization \(y = (y_1, \ldots, y_m) \).

Our model is that the points for the \(X \) process come from a stationary gamma renewal model with shape parameter \(\nu \) and mean inter-point distance \(1/2 \), so that

\[
x_1, x_2, \ldots \sim \text{iid gamma}(\nu, 2\nu)
\]

with density \(f(x; \nu) = e^{-2\nu x}(2\nu)^\nu x^{\nu-1}/\Gamma(\nu) \).

The distribution of \(x_0 \) is that which is required to give stationarity: \(g(x; \nu) = 2[1 - F(x; \nu)] \) where \(F \) is the cdf of \(f \). The last point \(x_n \) is treated as censored.
Example 2 (continued)

The Y process (what we observe) is obtained by thinning the X process: we flip a coin at each point in the X process, independently; $H \to$ retain point; $T \to$ drop point. The Y process is also a renewal process.

\[y_1, y_2, \ldots \sim \text{iid } f^*(x; \nu) = \sum_{k \geq 1} (1/2)^2 f_k(y; \nu) \]

where f_k is the density of a gamma distribution with shape and rate parameters $k \nu$ and 2ν—the convolution of $f(y; \nu)$ with itself k times.

The distribution of y_0 is

\[g^*(y; \nu) = (1/2)g(y; \nu) + \sum_{k \geq 1} (1/2)^{k+1}(g * f_k)(y; \nu) \]

\[= 1 - F^*(y; \nu) \]

where F^* is the cdf of f^*. Let G^* denote the cdf of g^*.

Then y contributes the following to the log likelihood for ν:

\[
l(\nu; y) = \begin{cases}
\log[1 - G^*(L; \nu)] & \text{if } m = 0 \\
\log g^*(y_0; \nu) + \log g^*(y_1; \nu) & \text{if } m = 1 \\
\log g^*(y_0; \nu) + \sum_{j=1}^{m-1} \log f^*(y_j; \nu) + \log g^*(y_m; \nu) & \text{otherwise}
\end{cases}
\]
Example 2 (continued)

We seek to maximize \(\sum_i l(\nu; y_i) \) where \(y_i \) is a vector like that we played with above.

To calculate \(l(\nu; y_i) \), we need to be able to calculate

\[
f^*(y; \nu) = \sum_{k=1}^{\infty} (1/2)^k f_k(y; \nu)
\]

\[
g^*(y; \nu) = 1 - F^*(y; \nu) = \int_y^\infty f^*(t; \nu) \, dt
\]

\[
1 - G^*(y; \nu) = \int_y^\infty [1 - F^*(t; \nu)] \, dt
\]

\(f^*(y; \nu) \) was calculated using ("by use of") its explicit formula, summing over \(k \) from 1 to 25.

\(g^*(y; \nu) \) was calculated by numerical integration of \(f^* \). (I used Simpson’s rule, replacing the upper limit of the integral with some large value. Clearly I could have done better!)

\(G^*(y; \nu) \) was calculated by a nested numerical integral. I’m sure I could have done better!

To get the MLE \(\hat{\nu} \), we are in the enviable situation of optimizing a function of one variable, \(\sum_i l(\nu; y_i) \). I used "Brent’s method" (pulled from Numerical Recipes in C).