QTL mapping: other single-QTL models

1. Consider mapping a simple Mendelian disease gene using a backcross. Suppose you have essentially complete genotype data, so that the exact locations of crossovers can be determined. Let L denote the length (in cM) of the interval to which you will have mapped the gene with n backcross individuals (i.e., the distance between the two closest flanking recombination events).

(a) How many backcross individuals will you need so that $E(L) \leq 1$ cM?
(b) How many backcross individuals will you need so that $Pr(L \leq 1 \text{ cM}) \geq 80\%$?

2. Derive the extension of the Kruskal-Wallis statistic discussed in lecture, for nonparametric interval mapping.
Let R_i denote the ranks of the phenotypes, and let p_{ig} denote the probability that mouse i has QTL genotype g, given the available marker data. Define $\bar{S}_g = \frac{\sum_i R_i p_{ig}}{\sum_i p_{ig}}$

(a) Show that $E(\bar{S}_g | \text{marker data, no linkage}) = (n + 1)/2$.
(b) Show that

$$\text{var}(\bar{S}_g | \text{marker data, no linkage}) = \left[\frac{n + 1}{12}\right] \left[\frac{n \sum_i p_{ig}^2 - (\sum_i p_{ig})^2}{(\sum_i p_{ig})^2}\right]$$

(c) Put it all together.