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Summary

Multipoint linkage analysis of quantitative-trait loci
(QTLs) has previously been restricted to sibships and
small pedigrees. In this article, we show how variance-
component linkage methods can be used in pedigrees of
arbitrary size and complexity, and we develop a general
framework for multipoint identity-by-descent (IBD)
probability calculations. We extend the sib-pair multi-
point mapping approach of Fulker et al. to general rel-
ative pairs. This multipoint IBD method uses the pro-
portion of alleles shared identical by descent at
genotyped loci to estimate IBD sharing at arbitrary
points along a chromosome for each relative pair. We
have derived correlations in IBD sharing as a function
of chromosomal distance for relative pairs in general
pedigrees and provide a simple framework whereby
these correlations can be easily obtained for any relative
pair related by a single line of descent or by multiple
independent lines of descent. Once calculated, the mul-
tipoint relative-pair IBDs can be utilized in variance-
component linkage analysis, which considers the likeli-
hood of the entire pedigree jointly. Examples are given
that use simulated data, demonstrating both the accu-
racy of QTL localization and the increase in power pro-
vided by multipoint analysis with 5-, 10-, and 20-cM
marker maps. The general pedigree variance component
and IBD estimation methods have been implemented in
the SOLAR (Sequential Oligogenic Linkage Analysis
Routines) computer package.

Introduction

Methods of linkage analysis that exploit identity-by-de-
scent (IBD) allele sharing between pairs of relatives are
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widely used in the genetic analysis of complex traits as
these methods generally require few assumptions about
the genetic model underlying expression of the trait.
There are a limited range of IBD allele-sharing methods
that can be used for quantitative-trait linkage analysis.
The best known of these is the sib-pair approach of
Haseman and Elaston (1972). Recently, variance-com-
ponent linkage analysis methods, which are more pow-
erful than relative pair–based approaches and have the
added advantage of providing reasonable estimates of
the magnitude of effect of the detected locus, have been
developed (Goldgar 1990; Schork 1993; Amos 1994;
Blangero and Almasy 1997). These variance-component
methods have been extended to accommodate general
pedigrees of arbitrary size and complexity (Comuzzie et
al. 1997) and to allow analyses that include genotype
# environment interaction (Blangero 1993; Towne et
al. 1997), epistasis (Stern et al. 1996; Mitchell et al.
1997), threshold models for discrete traits (Duggirala et
al. 1997), and pleiotropy (Almasy et al. 1997c), as well
as multivariate and oligogenic analyses (Schork 1993;
Almasy et al. 1997c; Blangero and Almasy 1997; Wil-
liams et al. 1997).

Multipoint linkage analysis increases the power to de-
tect true linkages and decreases the false-positive rate.
When linkage is detected, multipoint analysis also allows
support or confidence intervals to be determined for the
location of a gene. To date, practical application of mul-
tipoint IBD methods has been confined to sibships or
small pedigrees (Fulker et al. 1995; Kruglyak and Lander
1995; Kruglyak et al. 1996; Todorov et al. 1997), al-
though there have been some recent promising devel-
opments utilizing computer-intensive Monte Carlo–
based techniques (Sobel and Lange 1996; Heath 1997;
Heath et al. 1997) in large pedigrees.

The development of variance-component linkage
methodologies for use in extended families has created
a need for a multipoint IBD method suitable for use in
such pedigrees. In general, the computational burden for
exact multipoint calculations is considerable even in nu-
clear families and is prohibitive in large pedigrees. To
alleviate this problem, Fulker et al. (1995) developed a
multipoint approximation for sib pairs that uses a linear
function of IBD values at genotyped markers to estimate
IBD sharing at arbitrary chromosomal locations. The
Fulker method is based on the evaluation of average
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number of alleles shared IBD for a pair of siblings and,
although much less computationally expensive, has been
shown to be as effective as maximum-likelihood esti-
mation of the exact multipoint IBD distribution (Fulker
and Cherny 1996). In this article, we extend this simple
approach to allow multipoint analysis in pedigrees of
unlimited size and complexity. After presenting a general
variance-components framework for oligogenic quan-
titative-trait linkage analysis in arbitrary pedigrees, we
derive a series of functions for the correlation between
loci in IBD sharing as a function of chromosomal dis-
tance in relative pairs found in extended families, in-
cluding pairs as distant as third cousins (seventh-degree
relatives) and relatives related through multiple lines of
descent, such as double–first cousins and double–second
cousins. We then demonstrate the power and accuracy
of the method by using simulation techniques.

Method

Variance-Component Linkage Analysis in General
Pedigrees

The pedigree-based variance-component linkage
method uses an extension of the strategy developed by
Amos (1994) to estimate the genetic variance attribut-
able to the region around a specific genetic marker. Gold-
gar (1990) and Schork (1993) have proposed similar
variance-component models. This approach is based on
specifying the expected genetic covariances between ar-
bitrary relatives as a function of the IBD relationships
at a quantitative-trait locus (QTL). The modeling frame-
work used in variance-component analysis is remarkably
general (Lange et al. 1976; Hopper and Mathews 1982),
although it is also parsimonious with regard to the num-
ber of parameters that are required to be estimated rel-
ative to that needed in penetrance model–based linkage
analysis. Also, unlike most penetrance model–free link-
age analysis methods, the variance-component method
can be used both for localization of QTLs and for ob-
taining good estimates of the relative importance of the
QTL in determining phenotypic variance in the popu-
lation (Amos et al. 1996; Blangero and Almasy 1997;
Williams et al. 1997).

Let the quantitative phenotype, y, be written as a linear
function of the n QTLs that influence it:

n

y 5 m 1 g 1 e , (1)O i
i51

where m is the grand mean, gi is the effect of the ith
QTL, and e represents a random environmental devia-
tion. Assume gi and e are uncorrelated random variables
with expectation 0 so that the variance of y is 2j 5y

. We also allow for both additive and dom-n 2 2O j 1 ji51 g ei

inance effects, and therefore , where is2 2 2 2j 5 j 1 j jgi ai di ai

the additive genetic variance due to the ith locus and
is the dominance variance. If we assume two allelic2jdi

variants, Q and q with frequencies of pQ and ( )1 2 pQ

at a given QTL, the genotype-specific means are given
by , and and them 5 m 1 a, m 5 m 1 d m 5 m 2 aQQ Qq qq

QTL-specific genetic variances are given by 2j 5ai

and .2 2 22p (1 2 p )[a 1 (1 2 2p )d] j 5 [2p (1 2 p )d]Q Q Q di Q Q

For such a simple random effects model, we can easily
obtain the expected phenotypic covariance between the
trait values of any pair of relatives as

n

2 2[ ]Cov (y ,y ) 5 (k /2 1 k )j 1 k j , (2)O1 2 1i 2i ai 2i di
i51

where , and the k termsCov (y ,y ) 5 E[(y 2 m)(y 2 m)]1 2 1 2

represent the k coefficients of Cotterman (1940) with kji

being the ith QTL-specific probability of the pair of rel-
atives sharing j alleles IBD. Similarly, the expected phe-
notypic correlation between any pair of relatives is given
by

n

2 2[ ]r(y ,y ) 5 (k /2 1 k )h 1 k d , (3)O1 2 1i 2i ai 2i i
i51

where is the proportion of the total phenotypic var-2hai

iance due to the additive genetic contribution of the ith
QTL, and is the proportion due to the dominance2di

effect. In the classical quantitative genetic variance-com-
ponent model, we do not have information on specific
QTLs but utilize the expectation of the k probabilities
over the genome to obtain the following approximation:

2 2Cov (y ,y ) ≈ 2fj 1 d j , (4)1 2 a t d

where is the total additive genetic variance,2 n 2j 5 O ja i51 ai

is the total dominance genetic variance,2 n 2j 5 O jd i51 di

is the expected kinship coefficient1f 5 E[(k /2 1 k )]1i 2i2

over the genome with giving the expected co-2f 5 R
efficient of relationship, and is the expectedd 5 E[k ]t 2i

probability of sharing 2 alleles IBD. Because we are gen-
erally interested in the examination of one or a few QTLs
at a time, we exploit the above approximation to reduce
the number of parameters that need to be considered.
For example, if we are focusing on the analysis of the
ith QTL in equation (1), we can absorb the effects of
all of the remaining QTLs in residual components of
covariance. Employing these residual covariance terms,
the expected phenotypic covariance between relatives is
well approximated by

2 2 2 2Cov (y ,y ) 5 p j 1 k j 1 2fj 1 d j , (5)1 2 i ai 2i di g t d

where is the coefficient of relationshipp 5 (k /2 1 k )i 1i 2i
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or the probability of a random allele being IBD at the
ith QTL, represents the residual additive genetic var-2jg

iance, and now represents the residual dominance2jd

genetic variance. The p and k2 coefficients and their ex-
pectations effectively structure the expected phenotypic
covariances and are the basis for much of quantitative-
trait linkage analysis such as the sib-pair difference
method of Haseman and Elston (1972). For any given
chromosomal location, p and k2 can be estimated from
genetic marker data and information on the genetic map.

Given the simple model for phenotypic variation de-
scribed above, it is possible to use data from pedigree
structures of arbitrary complexity to make inferences
regarding the localization and effect sizes of QTLs. For
the simple additive model in which n QTLs and an un-
known number of residual polygenes influence a trait,
the covariance matrix for a pedigree can be written

n

2 2 2ˆQ 5 P j 1 2Fj 1 Ij , (6)O i ai g e
i51

where is the matrix whose elements ( ) provide theP̂ pi ijl

predicted proportion of genes that individuals j and l
share IBD at a QTL that is linked to a genetic marker
locus, F is the kinship matrix, and is an identity matrix.I

is a function of the estimated IBD matrix for a geneticP̂i

marker itself ( ) and a matrix of correlations betweenP̂ Bm

the proportions of genes IBD at the marker and at the
QTL

ˆ ˆP 5 2F 1 B(r,v) , (P 2 2F) , (7)i m

where v is the recombination frequency between marker
locus m and QTL i, and the elements b 5 r(p ,p Fr,v)ij i m

are the correlations between the IBD probabilities, where
r denotes rth type of kinship relationship. Equation (7)
is a matrix generalization of the results provided by
Amos (1994). The r-functions provide the autocorre-
lation functions between IBD probabilities as a function
of genetic distance, and they also allow prediction of the

matrix at any chromosomal location given estimatesˆ ˆP P

at correlated locations (e.g., when v ! .5). Derivation of
the r functions for arbitrary pedigree relationships is
provided below.

By assuming multivariate normality as a working
model within pedigrees, the likelihood of any pedigree
can be easily written and numerical procedures can be
used to estimate the variance-component parameters.
For the model in equation (6), the ln-likelihood of a
pedigree of t individuals with phenotypic vector isy
given by

2 2 2ln L(m,j ,j ,j ,bFy,X)ai g e

t 1 1 ′ 215 2 ln (2p) 2 ln FQF 2 D Q D , (8)
2 2 2

where m is the grand trait mean, ,D 5 (y 2 m 2 Xb) X
is a matrix of covariates, and is the matrix of regressionb

coefficients associated with these covariates. Likelihood
estimation assuming multivariate normality can be
shown to yield consistent parameter estimates even when
the distributional assumptions are violated (Beaty et al.
1985; Amos 1994). By performing an extensive series
of simulations, we have confirmed the consistency of
variance-component estimates of genetic effect size
(Blangero and Almasy 1997; J. T. Williams and J. Blan-
gero, unpublished data).

Using the variance-component model, we can test the
null hypothesis that the additive genetic variance due to
the ith QTL equals zero (no linkage) by comparing the
likelihood of this restricted model with that of a model
in which the variance due to the ith QTL is estimated.
The difference between the two log10 likelihoods pro-
duces a LOD score that is the equivalent of the classical
LOD score of linkage analysis. Twice the difference in
loge likelihoods of these two models yields a test statistic
that is asymptotically distributed as a : mixture of a1 1

2 2

variable and a point mass at zero (Self and Liang2x1

1987). When multiple QTLs are jointly considered, the
resulting likelihood-ratio test statistic has a more com-
plex asymptotic distribution that continues to be a mix-
ture of x2 distributions.

This basic model has been extended to incorporate a
number of more complex genetic models by allowing
for additional sources of genetic and nongenetic vari-
ance. In multilocus models, an additive # additive com-
ponent of epistatic variance can be estimated by use of
the Hadamard product of matrices for each locus asP

the coefficient matrix that structures the expected co-
variances among pedigree members (Mitchell et al.
1997). Dominance # dominance, additive # domi-
nance, and dominance # additive variance components
also can be specified by Hadamard products of appro-
priate and coefficient matrices. For example, al-P K2

lowing for additive # additive interactions between two
QTLs leads to the following equation for the phenotypic
covariance matrix of a pedigree:

2 2 2ˆ ˆ ˆ ˆQ 5 P j 1 P j 1 (P , P )j1 a1 2 a2 1 2 a1#a2

n

2 2 2ˆ1 P j 1 2Fj 1 Ij . (9)O i ai g e
i53

A household or shared environment effect can be added
by an additional variance component with a coefficient
matrix ( ) whose elements are 1 if the relative pair inH
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Figure 1 Half–grand-avuncular pair (blackened symbols)

question shares the environmental exposure or 0 oth-
erwise. This simple incorporation of a shared household
component leads to the following model for the phe-
notypic covariance matrix

n

2 2 2 2ˆQ 5 P j 1 2Fj 1 Hj 1 Ij . (10)O i ai g h e
i51

The general pedigree variance-component linkage
method, with all of the above described extensions, has
been implemented in a computer analysis package called
Sequential Oligogenic Linkage Analysis Routines (SO-
LAR), which employs the computer programs FISHER
and SEARCH (Lange et al. 1988) for likelihood optim-
ization in quantitative-trait analysis. For any of the com-
plex genetic models described above, SOLAR can also
incorporate covariate effects as well as multivariate
quantitative traits (Almasy et al. 1997c); discrete traits,
by use of a threshold model (Duggirala et al. 1997);
mixed discrete/quantitative-trait analyses; and genotype
# environment interaction (Towne et al. 1997).

Estimation of the IBD Probability Matrix for a Genetic
Marker

In the above formulation, all of the information re-
garding linkage is a function of the estimated matrices.P̂i

For a given genetic marker, a number of methods have
been proposed to calculate this IBD probability matrix
(Amos et al. 1990; Curtis and Sham 1994; Whittemore
and Halpern 1994). One simple and effective approach
is to perform pairwise likelihood-based estimation of the
elements of a matrix by calculating the posterior prob-P̂i

ability of genotypes at a completely linked pseudomar-
ker at which there is an extremely rare allele (i.e., an
allele frequency less than the expected mutation rate).
With this approach, the p for each pair of individuals
is evaluated by randomly assigning the rare homozygous
pseudomarker genotype to one of the individuals and
then calculating the likelihoods of seeing the three pos-
sible pseudomarker genotypes in the other individual
conditional on the marker information in the complete
pedigree. From the resulting posterior probabilities, it is
simple to calculate the three locus-specific k coefficients
for any marker and then to calculate the estimate. Thisp

method is relatively rapid for simple pedigrees but can
become tedious in complex pedigrees, especially ones
with multiple inbreeding loops. Any software that can
calculate two-point pedigree likelihoods can be used for
calculating IBD probabilities.

A second alternative for pedigrees of arbitrary size and
complexity is to calculate an estimate of all the elements
of the matrix jointly by Monte Carlo techniques.Pi

When there is no missing genetic marker information in
a pedigree, exact IBD probabilities can rapidly be cal-

culated by use of the algorithm of Davis et al. (1996).
Therefore, Monte Carlo methods can be used to impute
marker genotypes for individuals not typed in a pedigree
conditional on all other marker and pedigree informa-
tion. Once the marker genotype vector is filled in by
such a process, the exact maximum likelihood estimate
of p can be obtained immediately. The results of many
such imputations can be averaged by by use of the like-
lihood of the imputed marker genotype vector as a
weighting factor. There are many possible variations of
such a Monte Carlo approach, but all methods require
substantial computing for large pedigrees.

We use both of these approaches in our computer
program, SOLAR, and have noticed few differences be-
tween them across a wide range of practical applications
including extensive computer simulations. A practical
benefit of both approaches is the independence of major
aspects of the calculations, which renders the estimation
problem infinitely scalable with regard to parallel
computation.

Although it is comparatively straightforward to obtain
an estimate of the matrix for any genetic marker, exactP

calculation of multipoint IBD probabilities given a num-
ber of genetic markers is formidable except for relatively
small and simple pedigrees. Since it is well known that
exploitation of multipoint information can dramatically
improve the power to detect QTLs, fast and accurate
approximate methods would be of great benefit. In the
next section, we outline our approach to obtaining such
approximate multipoint IBD probabilities for any chro-
mosomal location.

Derivation of IBD Correlation Formulas for Multipoint
Analysis

Given the simplicity and accuracy of the Fulker
method (Fulker et al. 1995) for approximating multi-



1202 Am. J. Hum. Genet. 62:1198–1211, 1998

Table 1

Possible Two-Locus Combinations of p for Relative Pairs Able to
Share Only One Allele IBD

SECOND LOCUS

FIRST LOCUS

,p 5 0 i 5 01 ,1
p 5 i 5 11 2 TOTAL p

p 5 0, j 5 02 P00 P10 1 2 2E(p)

,1
p 5 j 5 12 2

P01 P11 2E(p)
Total p 1 2 2E(p) 2E(p)

Table 2

Formulas for p11 in Relative Pairs Related by a Single Line of
Descent

Type of Relative Pair p11

Direct descent (d21) (d21)(1/2 ) (1 2 v)
Half-avuncular or

half-cousin (d21) (d22) 2 2(1/2 ) (1 2 v) [v 1 (1 2 v) ]
Full avuncular d (d22) 2 31/2 (1 2 v) (2 2 5v 1 8v 2 4v )
Full cousin d (d23) 2 3 41/2 (1 2 v) (2 2 8v 1 15v 2 12v 1 4v )

NOTE.—d represents the degree of relationship.

point calculations for sib pairs, we decided to generalize
this approach to arbitrary pedigree relationships. Such
a general average sharing method requires that we for-
mulate all possible r(pi, pjFr, v) functions (i.e., IBD prob-
ability autocorrelation functions), which can be used to
provide the expected correlation in IBD between geno-
typed marker loci and any chromosomal location with
a known position relative to these marker loci. The cor-
relation in the proportion of alleles shared IBD by a
relative pair over some chromosomal distance can be
expressed with a simple formula:

Cov (p ,p )1 2
r(p ,p Fr,v) 5 , (11)1 2

j(p )j(p )1 2

where Cov(p1,p2) is the covariance in IBD allele sharing
between locus 1 (the genotyped marker) and locus 2 (the
arbitrary chromosomal location at which IBD sharing
is being estimated), and j(p1) and j(p2) are the expected
standard deviations in IBD allele sharing at the two loci.
These standard deviations depend on the degree of re-
lationship between the relative pair under consideration
and will be the same for the two loci. Thus, the denom-
inator reduces to the expected variance in the proportion
of alleles shared IBD for the type of relative pair, Var(p).
This variance in IBD sharing can be calculated by use
of the formula where2 2Var (p) 5 E(p ) 2 E(p) E(p) 5

is the expected IBD sharing for the relative pair.2f

The covariance is a simple function involving each
possible value of p at locus 1 and locus 2, adjusted by
E(p) and weighted by the probability of observing the
two-locus combination of p, pij:

[ ][ ]Cov (p ,p ) 5 p p 2 E(p) p 2 E(p) . (12)O1 2 ij 1 2
ij

For unilineal relative pairs, the number of alleles shared
IBD (i and j) at locus 1 and locus 2 will take the values
0 and 1, with the resulting IBD probabilities p1 and p2

being i/2 and i/2, which yields four possible two-locus
combinations of p. For bilineally related pairs able to
share two alleles IBD, such as siblings, i and j may also
be 2, resulting in nine possible combinations. If inbreed-

ing is present, i and j may equal 4 when both members
of a pair are autozygous for the same ancestral allele.
This results in 16 potential two-locus combinations of
allele sharing.

The process of obtaining the r function for any class
of unilineal relationship is straightforward and may best
be described by example.

An Example: Half–Grand-Avuncular Pairs

A half–grand-avuncular pair (fig. 1) are fourth-degree
relatives for whom and .Var (p) 5 7/256 E(p) 5 1/16
They may share 0 or 1 alleles IBD, yielding p values of
0 and . To obtain the covariance for this relative pair,1

2

we will need the probabilities of observing the four pos-
sible two-locus combination of p (table 1).

These probabilities can be determined by calculating
the probability of p2 equaling 0 or , given p1 and all1

2

possible patterns of recombination between the two loci.
For example, let p11 be the probability that 1 allele is
shared IBD at the second locus ( ), given that 11p 52 2

allele is shared at the first locus ( ) and taking into1p 51 2

account all possible patterns of recombination. In figure
1, individuals 4 and 9 represent a half–grand-avuncular
pair. The probability that they share 1 allele IBD at the
first locus ( ) is . Any allele shared IBD by 4 and1 1p 51 2 8

9 is necessarily also shared by intervening individuals 5
and 7. For 4 and 9 to share an allele at the second locus,
transmission from 2, the father of the half-sibs, to his
sons 4 and 5 must be either both nonrecombinant with
probability , or both recombinant with proba-2(1 2 v)
bility v2. In addition, transmissions from 5 to his son 7
and from 7 to 9 must both be nonrecombinant with
probability . Thus, 12 2 2(1 2 v) p 5 [v 1 (1 2 v) ] (1 211 8

.2v)
For pairs related by a single line of descent, p11 can

be calculated simply from one of four formulas provided
in table 2. These formulas use the degree of relationship
between the members of the pair and differ by whether
the pair is related through a direct line of descent (grand-
parental relationships), a half-sibling pair (half-avun-
cular and half-cousin relationships), a full sibling pair
descending through only one sib (full avuncular rela-
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Table 3

Correlation Coefficients for IBD Allele Sharing in Various Types of Relative Pairs

Relation Correlation in Proportion of Alleles Shared IBD E(p) Var(p)

Sibs 21 2 4v 1 4v
1
2

1
8

Half-sibs 21 2 4v 1 4v
1
4

1
16

Avuncular 2 31 2 5v 1 8v 2 4v
1
4

1
16

Grandparent 1 2 2v
1
4

1
16

First cousin 16 82 3 41 2 v 1 10v 2 8v 1 v3 3
1
8

3
64

Half-avuncular 16 82 31 2 4v 1 v 2 v3 3
1
8

3
64

Grand-avuncular 14 26 82 3 41 2 v 1 v 2 8v 1 v3 3 3
1
8

3
64

Great-grandparent 8 4 21 2 v 1 v3 3
1
8

3
64

Half–first cousin 32 48 162 3 41 2 v 1 8v 2 v 1 v7 7 7
1
16

7
256

First cousin, once

removed 40 92 108 64 162 3 4 51 2 v 1 v 2 v 1 v 2 v7 7 7 7 7
1
16

7
256

Half–grand-avuncular 32 48 162 3 41 2 v 1 8v 2 v 1 v7 7 7
1
16

7
256

Great-grand-avuncular 36 80 100 64 162 3 4 51 2 v 1 v 2 v 1 v 2 v7 7 7 7 7
1
16

7
256

Great-great-

grandparent 24 24 82 31 2 v 1 v 2 v7 7 7
1
16

7
256

Second cousin 32 88 80 344 32 322 3 4 5 61 2 v 1 v 2 v 1 v 2 v 1 v5 5 3 15 3 15
1
32

15
1024

Half-cousin, once

removed 16 176 208 128 322 3 4 51 2 v 1 v 2 v 1 v 2 v3 15 15 15 15
1
32

15
1024

First cousin, twice

removed 32 88 80 344 32 322 3 4 5 61 2 v 1 v 2 v 1 v 2 v 1 v5 5 3 15 3 15
1
32

15
1024

Half–second cousin 192 512 768 672 320 642 3 4 5 61 2 v 1 v 2 v 1 v 2 v 1 v31 31 31 31 31 31
1
64

31
4096

Second cousin, once

removed 224 720 1328 1008 384 642 3 4 5 6 71 2 v 1 v 2 v 1 48v 2 v 1 v 2 v31 31 31 31 31 31
1
64

31
4096

Third cousin 512 1888 4096 5632 1664 928 128 1282 3 4 5 6 7 81 2 v 1 v 2 v 1 v 2 v 1 v 2 v 1 v63 63 63 63 21 21 9 63
1

128
63

16384

tionships), or a full sibling pair descending through both
sibs (full-cousin relationships).

The probabilities for the remaining two-locus sharing
states may be similarly derived from the possible patterns
of recombination, or for pairs that can share only 0 or
1 alleles IBD, they can be obtained by subtracting from
the marginal totals for single-locus sharing of 0 or 1
allele IBD (table 1). For the half–grand-avuncular pair
described above,

1 1 1 2 2 2[ ]p 5 p 5 2 p 5 2 v 1 (1 2 v) (1 2 v)01 10 118 8 8

and

7 3
p 5 2 p 5 1 p00 01 118 4

3 1 2 2 2[ ]5 1 v 1 (1 2 v) (1 2 v) .
4 8

When these values are used, the covariance for a
half–grand-avuncular pair is

2

1
Cov (p ,p ) 5 p 0 21 2 00( )16

1 1 1
1 2p 0 2 201( )( )16 2 16

2

1 1
1p 2 , (13)11( )2 16

and, after standardization and gathering of terms, the
correlation is given by

r(p ,p d half 2 grand 2 avuncular,v)1 2

Cov (p ,p )1 25
7/256

32 48 162 3 45 1 2 v 1 8v 2 v 1 v . (14)
7 7 7

Table 3 shows E(p), Var(p), and the correlation between
IBD probabilities for other unilineal classes of relative
pairs. These relationships are the most common ob-
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Table 4

Correlation Coefficients for IBD Allele Sharing in Relative Pairs with Multiple or Compound Relationships

Relation Correlation in Proportion of Alleles Shared IBD E(p) Var(p)

Double–first cousin 16 82 3 41 2 v 1 10v 2 8v 1 v3 3
1
4

3
32

Double–first cousin, once

removed 143 731 1226 5557 1058 152 202 3 4 5 6 7 8 91 2 v 1 32v 2 v 1 v 2 v 1 v 2 58v 1 v 2 v18 9 9 36 9 9 9
1
8

3
64

Double–second cousin (fig.

2a) 176 785 2320 674 2248 4553 4828 2284 656 882 3 4 5 6 7 8 9 101 2 v 1 v 2 v 1 v 2 v 1 v 2 v 1 v 2 v 1 v21 21 21 3 7 14 21 21 21 21
1
16

7
256

Double–second cousin (fig.

2b) 32 88 80 344 32 322 3 4 5 61 2 v 1 v 2 v 1 v 2 v 1 v5 5 3 15 3 15
1
16

15
512

Double–second cousin (fig.

2c) 46 130 208 104 242 3 4 5 61 2 v 1 v 2 v 1 28v 2 v 1 v7 7 7 7 7
1
16

7
256

First cousin and second

cousin 352 248 112 472 160 322 3 4 5 61 2 v 1 v 2 v 1 v 2 v 1 v63 21 9 63 63 63
10
64

63
1024

Half-sib and first cousin 32 46 24 82 3 41 2 v 1 v 2 v 1 v7 7 7 7
3
8

7
64

Half-sib and half-avuncular 32 82 31 2 4v 1 v 2 v7 7
3
8

7
64

Double–half-first cousin 32 48 162 3 41 2 v 1 8v 2 v 1 v7 7 7
1
8

7
128

Double–half-avuncular 16 82 31 2 4v 1 v 2 v3 3
1
4

3
32

Half-sib and half–first

cousin 96 120 48 162 3 41 2 v 1 v 2 v 1 v23 23 23 23
5
16

23
256

Table 5

Probabilities of Two-Locus Combinations of p for Bilineal Relative
Pairs

SECOND

LOCUS

FIRST LOCUS

,p 5 0 i 5 01 ,1
p 5 i 5 11 2 ,p 5 1 i 5 21

p 5 0, j 5 02 x y00 00 x y 1x y10 00 00 10 x y10 10

,1
p 5 j 5 12 2 x y 1x y01 00 00 01 x y 12x y 1x y11 00 10 01 00 11 x y 1x y11 10 10 11

p 5 1, j 5 22 x y01 01 x y 1x y11 01 01 11 x y11 11

NOTE.—x and y represent the two locus-sharing probabilities for
the two independent lines of relationship.

served in human extended family studies. Table 4 pro-
vides the same information for a variety of relative pairs
related by multiple lines of descent. Note that while some
of these pairs have the same E(p) as pairs in table 3, the
variances may be different, since some pairs in table 4
can share both alleles IBD ( ). This leads to ninep 5 1
possible IBD allele sharing states, rather than four, and
complicates the calculation of the probability of each
sharing state. However, when a pair is related through
two independent lines of descent, the elements of the

matrices of sharing probabilities for each inde-2 # 2
pendent relationship can be multiplied to form a 3 #

matrix of sharing-state probabilities for the compound3
relationship (table 5). The first formula shown for dou-
ble–second cousins (table 4) applies only to pairs related
through double–first cousins (fig. 2a). Double–second
cousins also occur when two sets of first cousins marry
(fig. 2b) or when one person’s parent is cousin to both
of the other person’s parents (fig. 2c). Each of these
double–second cousin pairs have different correlation
formulas since the possible p values are not the same
(for the pair in fig. 2b, p may equal 1, while in figs. 2a
and 2c it cannot) and the possible patterns of recom-
bination also differ. The IBD sharing probability matrix
for the double–second cousins in figure 2b can be cal-
culated by multiplying the elements from the basic shar-
ing probability matrix for second cousins as described
above. However, the probabilities of the sharing states
for the double–second cousins in figures 2a and 2c can-
not make use of the formulas above, since the two lines
of descent pass through the same individual(s) and are
not independent. Thus, the two-locus sharing probabil-

ities for these types of second cousins were derived by
examining the possible patterns of recombination as de-
scribed for the half–grand-avuncular pair.

k2-Correlation Functions for Incorporating Dominance

Extension of the above results to allow for dominance
effects via the location-specific k2 probabilities requires
that we formulate the possible functionsr(k ,k Fr,v)2 2i j

(i.e., the k2-autocorrelation functions). These can be ex-
pressed as

1 1S S f (s 2 d )(t 2 d )s50 t50 (27s)(27t) 7r 7r
r(k ,k Fr,v) 5 , (15)2 2i j Var (d )7r

where the summations over s and t are performed over
the possible values (i.e., 0 and 1) of k2 so that the nec-
essary probabilities are limited to f22, f02, f20, and f00. The
probabilities designated by f can be obtained from those
derived above for the p-autocorrelations for bilineal rel-
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Figure 2 Three types of double–second cousins (blackened symbols)

Table 6

Correlation Coefficients for k2 as a Function of v and Relationship

Relation r(k ,k d r,v)2i 2j E(k2) Var(k2)

Siblings 16 32 32 162 3 41 2 v 1 v 2 v 1 v3 3 3 3
1
4

3
16

Double–first cousin 128 496 384 1732 1696 352 128 642 3 4 5 6 7 81 2 v 1 v 2 v 1 v 2 v 1 v 2 v 1 v15 15 5 15 15 5 5 15
1
16

15
256

Double–second

cousin (fig. 2b)

1024 5888 63488 157504 282368 3733762 3 4 5 61 2 v 1 v 2 v 1 v 2 v 1 v85 85 255 255 255 255
365824 87744 27136 15872 2048 10247 8 9 10 11 122 v 1 v 2 v 1 v 2 v 1 v255 85 51 85 51 255

1
256

255
65536

First cousin and sec-

ond cousin 640 1024 9088 18128 8416 8420 16768 7552 2048 2562 3 4 5 6 7 8 9 101 2 v 1 v 2 v 1 v 2 v 1 v 2 v 1 v 2 v 1 v63 21 63 63 21 21 63 63 63 63
1
64

63
4096

Half-sib and first

cousin 48 232 232 128 322 3 4 5 61 2 v 1 20v 2 v 1 v 2 v 1 v7 7 7 7 7
1
8

7
64

Half-sib and half-

avuncular 40 96 128 96 322 3 4 51 2 v 1 v 2 v 1 v 2 v7 7 7 7 7
1
8

7
64

Double–half-first

cousin 512 640 4352 6464 6400 4096 512 2562 3 4 5 6 7 81 2 v 1 v 2 v 1 v 2 v 1 v 2 v 1 v63 21 63 63 63 63 21 63
1
64

63
4096

Double–half-

avuncular 32 272 448 448 256 642 3 4 5 61 2 v 1 v 2 v 1 v 2 v 1 v5 15 15 15 15 15
1
16

15
256

Half-sib and

half–first cousin 32 272 448 448 256 642 3 4 5 61 2 v 1 v 2 v 1 v 2 v 1 v5 15 15 15 15 15
1
16

15
256

atives. Specifically, , , andf 5 p f 5 f 5 d 2 f22 22 02 20 7r 22

.f 5 1 2 2d 1 f00 7r 22

Table 6 provides most of the required k2-autocorre-
lation functions that are encountered in studies of ex-
tended human families. In general, for a given relation-
ship class, we find that . In otherr(p ,pFr,v) 1 r(k ,k Fr,v)i j 2i 2j

words, the correlation between k2 values decays more
rapidly with genetic distance than does that for the p

values. For example, comparing the appropriate corre-
lation functions for sib pairs, we find that

1 2r(p ,pFsibling,v) 2 r(k ,k Fsibling,v) 5 (4v 2 20v 1i j 2i 2j 3

, which is 10 for all . Therefore, the3 432v 2 16v ) v 1 0

incorporation of dominance effects into a variance-com-
ponent model will be most useful when the QTL is com-
paratively close to a genetic marker.

Estimation of and Matrices by Use of MultipointP K2

Information

Given the p- and k2-correlation functions provided in
tables 3, 4, and 6, it is possible to estimate the matrixP

at any chromosomal location conditional on all of the
available genetic marker information and the map lo-
cations of the markers. A Haldane mapping function is
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Table 7

Phenotyped Relative Pairs Informative for
Linkage in the Simulated Pedigrees

Degree (Coefficient) of Relationship
and Relationship Type

No. of
Pairs

First ( ):1
2

Sibs 771
Parent-offspring 801

Second ( ):1
4

Avuncular 1,485
Grandparent-grandchild 151
Half-sibs 26

Third ( ):1
8

Cousins 2,761
Grand-avuncular 497
Half-avuncular 64

Fourth ( ):1
16

Cousins once removed 3,051
Half-cousins 27
Great-grand-avuncular 19
Half–grand-avuncular 13

Fifth ( ):1
32

Cousins twice removed 423
Second cousins 169

10,258

employed to relate genetic distances to v. To estimate
IBD probabilities at any chromosomal location, we have
chosen to generalize the regression-based averaging
method of Fulker et al. (1995) to arbitrary relationships.
Basically, for any pair of individuals of relationship r,
we find the vector of regression coefficients on the(b )rø

available estimated marker-specific vector that predictp̂z

, where the subscripts now refer to chromosomal lo-pl

cations in centimorgans. This is done by the standard
regression method in which

21ˆ ˆb 5 V(p ) Cov (p ,p ) , (16)rø z z ø

where is a vector of n regression coefficients (assum-brø

ing that we have typed n markers on the chromosome),
is the covariance matrix of the marker IBDˆV(p ) n # nz

probabilities, and is a vector of the expectedˆCov (p ,p )z ø

covariances between the marker IBD probabilities and
those at the chromosomal location . As shown byø
Fulker et al. (1995), the elements of are determinedˆV(p)
by the genetic distances between the markers, the

functions derived above, and the empiricalˆ ˆr(p ,pFr,v)i j

variances of the . Likewise, the elements of the vectorp̂i

are given by the product of valuesˆ ˆ ˆCov (p ,p ) r(p ,pFr,v)z ø ø i

and the empirical variances of the marker .p̂i

Once obtained, the vector is used to estimateb prø ø

for the ijth pair of relatives by

′ ¯ˆ ˆp 5 2f 1 b (p 2 p̂) , (17)øij r rø

where the symbol without a subscript indicates thep̂

vector of marker IBD probabilities, and is its empiricalp̂̄

mean vector. Subject to constraints on the acceptable
parameter space that are r dependent, equation (16) can
be used to estimate each pairwise element of the ma-P̂ø

trix, which is then used to structure the expected phe-
notypic covariances between relatives as shown in equa-
tion (6). The similarity of equation (7) and equation (17)
is also apparent, since equation (7) is the matrix pre-
diction equation when there is only a single marker.

A similar approach can be employed to obtain mul-
tipoint estimates of by substituting the appropriatek2ø

expectations, k2-autocorrelations, empirical variances,
and means in equations (16) and (17).

Simulations

To evaluate the utility of this multipoint variance-com-
ponent method for detecting QTLs, we performed a se-
ries of computer simulations to assess its properties and
accuracy. In the first set of simulations, six quantitative
traits and genotype data were simulated for 200 repli-
cates of a data set containing 1,497 total individuals,
1,000 phenotyped, based approximately on the pedigree
structure of the San Antonio Family Heart Study. These
are extended pedigrees, including all available first-, sec-
ond-, and third-degree relatives of a proband and the
proband’s spouse as well as the married-in parents of
any descendants. Pedigree size ranges from 37 to 128
individuals ; thus, multipoint quantitative-trait¯(x 5 65)
linkage analysis of these pedigrees would not be possible
with any previously published method. The number of
relative pairs with both members phenotyped is shown
in table 7 for each type of relative pair present in these
pedigrees. Although the SOLAR general pedigree vari-
ance-component linkage analysis uses IBD allele sharing
between these relative pairs, it should be noted that it
is not a relative-pair method as likelihoods are maxi-
mized over entire families considered jointly. The num-
ber of relative pairs of various types is shown in order
to illustrate the depth and complexity of these pedigrees.

Fully informative markers were simulated at a posi-
tion of 33 cM on a 100-cM chromosome. The alleles of
this fully informative marker were grouped together into
“high” and “low” bins in various ways to obtain biallelic
QTLs whose most common allele took one of three pos-
sible generating values, 0.5, 0.7, or 0.9. Two generating
values of the additive effect parameter 1a 5 (m 2 m )qq2

were considered that produced either a 2- or 2.5-SD
difference between the contrasting QTL genotypes. For
these simulations, dominance effects were not included.
Using the six sets of generating parameters, we simulated
six quantitative traits in which the relative variance due
to the QTL (i.e., the heritability due to the QTL) ranged
from .15 (where and ) to .44 (wherep 5 .9 a 5 1Q

and ). With CHRSIM (Speer et al.p 5 .5 a 5 1.25Q
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Table 8

Percentage of Simulation Replicates with a Maximum LOD Score x3.0 and Mean Maximum LOD Score

h2

DUE

TO

QTL
ALLELE

FREQUENCY

DISPLACE-
MENT

PERCENTAGE OF REPLICATES WITH MAXIMUM LOD x3.0 (MEAN MAXIMUM LOD)

FULLY IN-
FORMATIVE

MARKER AT

QTL

5-cM MAP 10-cM MAP 20-cM MAP

Two-point Multipoint Two-point Multipoint Two-point Multipoint

.44 .5 2.5 99.5 (13.14) 98.5 (6.45) 98.9 (7.63) 96.0 (6.05) 97.2 (6.86) 72.0 (4.24) 84.5 (5.05)

.40 .5 2.0 97.5 (10.44) 81.5 (5.11) 87.5 (5.99) 78.5 (4.81) 82.5 (5.32) 52.0 (3.31) 63.0 (3.88)

.33 .7 2.5 95.5 (7.30) 68.0 (3.89) 75.0 (4.39) 57.0 (3.59) 67.0 (4.01) 35.0 (2.62) 47.5 (2.99)

.30 .7 2.0 86.0 (6.00) 49.5 (3.27) 58.5 (3.61) 40.0 (2.95) 51.0 (3.31) 21.5 (2.14) 35.5 (2.49)

.22 .9 2.5 54.0 (3.71) 32.0 (2.45) 34.5 (2.52) 24.5 (2.17) 28.0 (2.26) 10.5 (1.58) 16.5 (1.72)

.15 .9 2.0 27.0 (2.10) 8.0 (1.60) 11.5 (1.59) 6.0 (1.39) 10.0 (1.45) 2.5 (1.05) 3.5 (1.12)

NOTE.—Simulated QTLs were biallelic and accounted for 15%–44% of the trait variance. The second and third columns provide the
frequency of the more common QTL allele and the displacement between homozygote means in standard deviation units, respectively.

1992; Terwilliger et al. 1993), marker loci were simu-
lated every 5 cM, based on allele number and frequency
patterns drawn from a commercially available screening
set. For each of the six independent traits/generating
models, two-point LOD scores were assessed at each of
the marker loci and at the fully informative marker un-
derlying the trait. Multipoint analysis was performed
with 5-, 10-, and 20-cM maps drawn from the 21 sim-
ulated markers, with IBD sharing estimated every 2 cM
for every relative pair. Both two-point and multipoint
linkage analyses were performed by use of the variance-
component linkage methods described above and im-
plemented in SOLAR.

Table 8 provides the mean maximum LOD scores and
the percentage of LOD scores 13.0 obtained for each
generating model. The fourth column of table 8 shows
the mean LOD obtained when the fully informative
marker directly on the QTL location was used. This
value reflects the maximum LOD scores obtainable in
these pedigrees under ideal conditions of marker place-
ment and heterozygosity and serves as a gold standard
against which to compare the other linkage analyses.
For all three densities of marker maps, multipoint var-
iance-component analysis, as compared to the best two-
point variance-component result, improved both the
mean maximum LOD score and the percentage of max-
imum LOD scores 13.0. For example, with a 5-cM map,
the mean LOD for multipoint analysis was an average
of 0.5 LOD units higher for the multipoint analysis over
the best two-point LOD when considered across all gen-
erating values. In addition, the percentages of maximum
LOD scores 13.0, which have standard errors ranging
from 0.1 to 1.8, are improved under all six generating
models. Table 8 also shows that a substantial amount
of linkage information is unavailable even at the 5-cM
density, which can be seen by the difference in the mean
LOD scores when the fully informative marker at the
QTL is compared to the mean multipoint LOD (13.14
vs. 7.63). Because we have arbitrarily placed the QTL

at a the midpoint of the 5-cM interval, simply adding
another marker within the interval would substantially
improve the LOD.

The increase in power with both multipoint variance-
component analysis and denser marker maps as well as
the accuracy of multipoint localization of the QTL are
illustrated in figure 3, which compares the LOD profiles,
averaged over the 200 simulations, for one of the sim-
ulated traits. Even with a sparse map with an intermar-
ker distance of 20 cM, multipoint analysis provided a
noticeable improvement in LOD score over the two-
point analyses, as well as an unbiased estimate of QTL
location.

For all of the generating models, the multipoint point
analysis produced excellent estimates of QTL location.
For example, for the model in which the QTL heritability
was 0.44, the estimated locations were 33.21 5 0.33,
33.03 5 0.53, and 34.31 5 0.59 for the 5-, 10-, and
20-cM scans, respectively. Similarly for the model in
which the QTL heritability was 0.30, the estimated lo-
cations were 32.67 5 0.58, 32.15 5 0.65, and 34.82
5 0.98. In all cases, the estimated chromosomal location
was not significantly different from the generating value.
Additional evidence that our multipoint variance-com-
ponent procedure yields unbiased estimates of QTL lo-
cation is provided elsewhere (Almasy et al. 1997c; Dug-
girala et al. 1997; Towne et al. 1997; Williams et al.
1997; J. T. Williams and J. Blangero, unpublished data).

The six sets of generating parameters used in these
simulations are effectively single major gene models in
which there are two QTL alleles acting in a simple co-
dominant manner. This straightforward model does not
take advantage of the strengths of the variance-com-
ponent linkage method. The existence of a single major
gene inherently violates the assumption of multivariate
normality on which the variance-component linkage
method is based. However, it has been demonstrated that
the method is robust to violations of this assumption
(Beaty et al. 1985). In addition, the use of a biallelic
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Figure 3 Two-point and multipoint LOD score profiles for 5-, 10-, and 20-cM marker maps averaged over 200 simulations for a QTL
at 33 cM and with an additive genetic heritability of .33.

QTL is somewhat limiting, since the variance-compo-
nent methodology is capable of exploiting the greater
information content in a multiallelic QTL system.

In order to test the accuracy of our estimates of genetic
effect size, we performed a second set of simulations in
which, given a QTL allele frequency of , we chosep 5 .5Q

a to produce a series of generating models in which the
additive genetic heritability due to the QTL varied2(h )q

from 0.05 to 0.50 in increments of 0.05 units. In this
simulation, we also allowed for a residual genetic her-
itability of 0.20. For each generating model, 100 repli-
cates were assessed and quantitative-trait linkage anal-
ysis was performed on each. Figure 4 shows a plot of
the expected and the mean of the maximum likelihood2hq

estimates of at the expected QTL location. Figure 42hq

clearly shows that the variance-component procedure
yields outstanding estimates of genetic effect size. These
simulations were also performed with a QTL allele fre-
quency of with similar results (not shown).p 5 .9Q

Discussion

This powerful variance-components method makes it
possible to perform multipoint linkage analysis with
quantitative-trait data in pedigrees of arbitrary size and
complexity. Such an analysis would previously have re-
quired either fragmentation of any large pedigrees into
smaller subsets, resulting in a reduction in power to de-
tect linkage, or the application of one of the new com-

puter intensive Monte Carlo–based parametric linkage
methods (e.g., the method of Heath 1997). The multi-
point IBD estimation method presented in this article
has already been utilized successfully in variance-com-
ponent linkage analyses of simulated data from Genetic
Analysis Workshop 10 (Almasy et al. 1997c) as well as
such quantitative traits as serum leptin (Comuzzie et al.
1997), and HDL-cholesterol levels (Almasy et al. 1997b)
in the extended pedigrees of the San Antonio Family
Heart Study and event-related brain potentials in the
Collaborative Study on the Genetics of Alcoholism (Al-
masy et al. 1997a; Porjesz et al. 1997; Begleiter et al.,
in press).

The IBD estimation procedure is quite efficient and
compares favorably to other multipoint methods suit-
able for use in pedigrees. In contrast to the Elston-Stew-
art algorithm (1971), in which computation increases
exponentially with the number of markers, or the
Lander-Green Hidden Markov Model (Lander and
Green 1987; Kruglyak et al. 1996), in which compu-
tation increases exponentially with the number of non-
founders in a pedigree, because the suggested multipoint
algorithms are linear functions of previously computed
IBDs, processing time increases only linearly for addi-
tional individuals or additional loci. For an input file
containing IBD information on 16 genotyped marker
loci for 20,854 relative pairs, SOLAR, running on a Sun
workstation, required only 1 min 10 s to estimate the
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Figure 4 Plot of expected vs. estimated additive genetic heritability due to the QTL. Bars indicate 51 standard error.

IBD matrix at an arbitrary chromosomal location. Such
computational speed makes it feasible to estimate mul-
tipoint IBD matrices every 1 cM along an entire chro-
mosome, even for very large data sets with many gen-
otyped markers. SOLAR was recently used to analyze
complex pedigree data from Genetic Analysis Workshop
10 (Almasy et al. 1997c), with 11,000 genotyped indi-
viduals and as many as 50 markers on a chromosome.
Similarly, we are employing this method on a large com-
plex baboon pedigree (with a pedigree size of 750 ani-
mals) and an extremely large pedigree of individuals
from an isolated human population (with a pedigree size
of 1,200 individuals). An additional benefit of this ap-
proach is that, once a marker data set is deemed final,
IBD calculations need be performed only once and the
resulting matrices stored for all future analyses. This
feature is particularly useful in large studies of complex
disease where many different phenotypes have been mea-
sured and each needs to be processed through genome-
wide linkage analysis.

IBD correlation formulas have previously been derived
by a number of authors for limited classes of relative
pairs. Amos (1988) derived the IBD correlations for half-
sibling, grandparent-grandchild, avuncular, and first-
cousin pairs by methods similar to those described
above. Feingold (1993) and colleagues (Feingold et al.
1993) employed a different strategy, using a Markov
approximation to derive these same four formulas for
use in affected relative pair–based linkage analysis using

IBD status. These authors and Lander and Kruglyak
(1995) were primarily interested in the p-autocorrela-
tions in order to assess the importance of correlated test
statistics in genome scanning. In this regard, it is useful
to point out that the Lander and Kruglyak crossover
rate parameter, which is central to their method for eval-
uating genomewide significance levels, is given by 2

. Thus, the crossover rate param-1 lim [dr(p ,pFr,v)/dv]vr0 i j2

eter is an approximate measure of how rapidly the p-
autocorrelations decay with genetic distance and can be
obtained for any pairwise relationship simply as half the
absolute value of the coefficient associated with v1 in the
appropriate r-function. For example, from table 4, we
can immediately determine that the crossover rate pa-
rameter for third cousins is . Our1 (512/63) 5 256/632

results in tables 3 and 4 can be used to extend obser-
vations on the behavior of correlated test statistics for
linkage methods based on extended pairwise
relationships.

The present study extends the IBD correlation for-
mulas to many other classes of relative pairs and pro-
vides a simple framework for deriving similar formulas
for any relative pair related by a single line of descent
or by multiple independent lines of descent. Simulations
suggest that multipoint variance-component linkage
analyses with IBDs calculated based on these correla-
tions recover an unbiased estimate of the location of a
gene and provide increased power to detect linkage even
with intermarker distances as widely spaced as 20 cM.
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These multipoint IBD estimates remove an impediment
to making full use of the recent expansions of variance-
component linkage methodology, improving the power
to examine a wide variety of complex genetic models
for both quantitative and discrete traits in general
pedigrees.

Applications of quantitative-trait linkage analysis are
increasing rapidly. Because of the superior information
content of quantitative traits, genetic analysis of quan-
titative risk factors serves as a powerful tool for eluci-
dating the genetic mechanisms influencing common dis-
eases. Numerous strategies and sampling designs are
being formulated, and each has its own strengths and
weaknesses. It is well known that, in many situations,
extended pedigrees will dramatically outperform smaller
family units such as sib pairs, sibships, or nuclear fam-
ilies with regard to the power to detect and accurately
localize QTLs (Wijsman and Amos 1997). Unfortu-
nately, although quantitative data have often been col-
lected in more extended kindreds, the lack of adequate
linkage tools has generally led to such rich data sets
being leached of their potential linkage information by
truncation to smaller familial units. Recently, direct com-
parisons of pedigree-based and nuclear family–based
samples consisting of the same number of phenotyped
individuals in the same distribution of sibship sizes has
underscored the loss of power resulting from fragmen-
tation of a large pedigree-based sample (Duggirala et al.
1997; Towne et al. 1997; Williams et al. 1997). How-
ever, with the advent of the multipoint variance-com-
ponent linkage method, the superior power of extended
pedigrees can now be routinely and fully exploited for
the localization of QTLs.

The SOLAR software, which incorporates the pedi-
gree-based variance-component and multipoint IBD
methods described here, is freely available to interested
investigators in a compiled version. SOLAR can be ob-
tained through the Southwest Foundation for Biomed-
ical Research (http://www.sfbr.org).
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