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ABSTRACT
Motivation: There has been much interest in using patterns
derived from surface-enhanced laser desorption and ioniza-
tion (SELDI) protein mass spectra from serum to differentiate
samples from patients both with and without disease. Such
patterns have been used without identification of the underly-
ing proteins responsible. However, there are questions as to
the stability of this procedure over multiple experiments.
Results: We compared SELDI proteomic spectra from serum
from three experiments by the same group on separating
ovarian cancer from normal tissue.These spectra are available
on the web at http://clinicalproteomics.steem.com. In general,
the results were not reproducible across experiments. Baseline
correction prevents reproduction of the results for two of the
experiments. In one experiment, there is evidence of a major
shift in protocol mid-experiment which could bias the results.
In another, structure in the noise regions of the spectra allows
us to distinguish normal from cancer, suggesting that the nor-
mals and cancers were processed differently. Sets of features
found to discriminate well in one experiment do not gener-
alize to other experiments. Finally, the mass calibration in all
three experiments appears suspect.Taken together, these and
other concerns suggest that much of the structure uncovered
in these experiments could be due to artifacts of sample pro-
cessing, not to the underlying biology of cancer. We provide
some guidelines for design and analysis in experiments like
these to ensure better reproducible, biologically meaningfully
results.
Availability: The MATLAB and Perl code used in our analyses
is available at http://bioinformatics.mdanderson.org
Contact: kabagg@mdanderson.org

INTRODUCTION
There has been much recent interest in using patterns in
SELDI proteomic mass spectra derived from serum to differ-
entiate samples from patients both with and without disease.
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However, there are questions as to the stability of this proced-
ure over multiple experiments. An illustration of the potential
power of the proteomic technique is apparently provided by
ovarian cancer. Ovarian cancer is frequently a deadly disease,
and its morbidity is strongly linked to our inability to detect the
tumors at an early stage. Neither X-rays nor MRIs are able to
differentiate between cancers and benign cysts, surgical veri-
fication of cancer status is invasive, and gene product assays
(such as CA125) have never been shown to be effective in
screening programs. A simple, easily applied diagnostic test
with high sensitivity and specificity would be of great utility.

In a recent paper in The Lancet, Petricoin et al. (2002)
reported finding patterns in SELDI-TOF proteomic spectra
that can distinguish between serum samples from healthy
women and those from women with ovarian cancer, even when
the cancers are at early stages. In their initial study, they started
with 100 cancer spectra, 100 normal spectra and 16 ‘benign
disease’ spectra. The cancer and normal sets were randomly
split, with 50 cancer and 50 normal spectra used to train a
classification algorithm. The resulting algorithm was used to
classify the remaining spectra. It correctly classified 50/50 of
the cancers and 47/50 of the normals in the validation sub-
set. It called 16/16 of the benign disease ‘other’ than normal
or cancer1. These results are impressive and have received a
good deal of attention.

The initial experiment and two related experiments by the
same group of investigators have some very positive features:
(1) the investigators collected enough samples to find real
structure in the data; (2) splitting the data into training and
validation sets allows for internal validation of the structure
found, protecting somewhat against the tracking of random
noise; and (3) all the data has been made publicly available
(on the website http://clinicalproteomics.steem.com). One or
two other groups have been willing to make their data avail-
able (Adam et al., 2002), but this laudable practice is not yet
universal.

1Some numbers in the initial paper indicate 46/49 normals, and 16/17 benign
disease; one benign disease sample was later determined to be normal.
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Through our own analyses of these data, we have confirmed
(in one case) their findings of the existence of structural fea-
tures that strongly separate the normal from cancer samples,
with a degree of separation well beyond what would be
expected by random noise. The question is whether this struc-
ture is due to inherent biological differences associated with
cancer, or due to artifacts associated with the technology.
Changes that could introduce such artifacts include differ-
ential handling and/or processing of the samples, changes in
the type of ProteinChip array, mechanical adjustments to the
mass spectrometer itself, or a shift to a different instrument
or lab, among others. The answer to the question of whether
biology or artifact is the driving force is crucial: the former
has scientific and medical implications and should be repro-
ducible, while the latter means only that the statistical analysis
of separating signal from noise will be more difficult.

Our findings suggest that while there are differences within
individual experiments, these differences are not the same
across experiments. This lack of agreement indicates the need
for careful experimental design, for varying experimental con-
ditions when conducting such studies, and for better methods
of external calibration.

BACKGROUND
In this section we review the nature of the available data,
the processing applied to the data, the function used for
assessing the goodness of a feature set, and the method used
for choosing feature sets. All the methods discussed in this
section are those that are presented on the website http://
clinicalproteomics.steem.com and used in the initial analysis
by Petricoin et al. (2002). These are not our own methods.

SELDI mass spectrometry
In brief, surface-enhanced laser desorption and ionization
time of flight (SELDI-TOF) mass spectrometry begins with
applying a biological sample (such as serum) to a precoated
stainless steel slide. This coating ‘enhances’ the surface to
bind preferentially a particular class of proteins based on
their physiochemical properties. Different coatings give dif-
ferent ‘chip types’ which bind to different classes of proteins.
The sample is further mixed with an energy absorbing mat-
rix (EAM) such as sinnapinic acid, which causes the entire
mixture to crystallize as it dries. The sample is then put
into a vacuum chamber and the crystal is hit with a laser,
causing the proteins to desorb and ionize when the matrix
absorbs the energy produced at the wavelength of the nitro-
gen laser. This produces ionized protein molecules in the
gas phase. A brief electric field is then applied to acceler-
ate the ions down a flight tube, and a detector at the end
of the tube records the time of flight. Given the time of
flight, the known length of the tube and the voltage applied,
the mass-to-charge ratio (m/z value) of the protein can be
derived. A typical spectrum consists of the sequentially recor-
ded numbers of ions arriving at the detector (the intensity)

coupled with the corresponding m/z value. Peaks in the
intensity plot ideally correspond to individual proteins. We
distinguish between a peak (a local maxima in the observed
spectra) and a feature (the observed intensities at a partic-
ular m/z value). A set of spectra will have thousands of
features, but only a small fraction of these would corres-
pond to peaks. More details are available in Siuzdak (1996) or
de Hoffman and Stroobant (2002).

The datasets
There are three datasets of SELDI ovarian mass spectra
derived from serum currently available on the website, which
we shall refer to as datasets 1–3, respectively.

(1) Dataset 1, which was described in the initial paper
(Petricoin et al., 2002), consists of 216 spectra divided
into five files: Training Cancer, Training Normal, Test
Cancer, Test Normal and Benign Disease. These spec-
tra were obtained using the Ciphergen H4 ProteinChip
array. These spectra were baseline-subtracted.

(2) Dataset 2 uses the same 216 samples as above, but run
on the Ciphergen WCX2 ProteinChip array. Again, the
spectra were baseline-subtracted.

(3) Dataset 3 contains a new set of samples, 91 normal and
162 cancer. The split into training and test groups is not
reported here. These samples were prepared robotic-
ally, whereas the samples in the previous datasets were
prepared by hand. The samples were run on the WCX2
array which was also used for dataset 2. Finally, these
spectra have not been baseline subtracted.

Each spectrum is reported in a text file with two columns.
The first column consists of a list of 15 154 mass-to-charge
ratios (m/z values) and the second column gives the associated
intensities. The m/z values reported are common across all
spectra and all datasets.

The data processing
Despite the fact that baseline-subtracted data are provided
on the website for the first two datasets, we believe all their
analyses were performed on the datasets before baseline sub-
traction. More details are given in the analysis and discussion.
Before comparison, all the spectra in an experiment were nor-
malized to have the same [0, 1] intensity range as follows. For
a single spectrum, Let Vi denote the raw intensity at the i-th
m/z value, i ∈ {1, . . . , 15 154}, and let Vmin and Vmax denote
the smallest and largest observed intensities in the spectrum,
respectively. Then the normalized intensity NVi is given by

NVi = Vi − Vmin

Vmax − Vmin
.

The fitness function
The ‘fitness’ of a particular feature set containing N features
is assessed using the associated scaled intensities to define
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Fig. 1. The effect of baseline subtraction on proteomic spectra. The operation is nonlinear and irreversible, and produces negative intensities
at low m/z values. Normally, low m/z values are excluded from consideration due to known contamination with matrix noise.

locations in the N -dimensional unit cube as follows. Start
with sample 1. If the Euclidean distance between sample 2
and sample 1 is less than 0.1 ∗ √

N , put the samples into a
common cluster and use the mean of the samples as the center.
If sample 2 is farther away, it starts a new cluster. Repeat the
allocation of samples as above until all samples are allocated
to clusters. After all samples have been clustered, each cluster
is labeled ‘cancer’ or ‘normal’ by majority vote, and the fit-
ness is defined in terms of the number of samples correctly
classified.

The selection of feature sets
Feature sets are chosen for analysis using a genetic algorithm
(Goldberg, 1989; Holland, 1994). Each run of the genetic
algorithm starts with 1500 logical chromosomes (feature sets)
of a size ranging from 5 to 20 index values. The fitness of each
feature set is assessed as above. New populations are then
produced by preferentially combining pieces of the ‘most fit’
members of the current generation. The process then evolves
for 250 generations, with a mutation rate of 0.02% and random
crossover locations. All 15 154 distinct features in a spectrum
are available for inclusion in a feature set. There is no initial
peak finding step.

The best feature sets
For each of the experiments, a single feature set that allows
the cancers to be separated from the normals is reported.

OUR ANALYSIS OF THE SELDI OVARIAN
CANCER SERUM DATASETS
Our goals in looking at all of the ovarian datasets were to check
the initial results and to find features separating cancers and
normals that were stable across experiments. However, we
encountered some major problems.

Baseline correction prevents reproduction of
results
Using the spectra in dataset 1, we processed the data accord-
ing to the methods described above. Then, using the processed
intensities at the 5 m/z values in the feature set reported on
the website, we computed the distances between all pairs of
spectra and assembled these in a distance matrix. Two prob-
lems were immediately apparent. First, the distances between
cancer samples and normal samples were not different from
the distances between two cancer samples or between two
normal samples. Ideally, we look for a ‘plaid’ pattern, with
small distances between samples of the same type and large
distances between samples of different types. (Such a pattern
is visible in Fig. 4a, described below.) Second, there were
only four pairwise distances greater than

√
5/10, which is the

cutoff distance for declaring a new cluster with five peaks,
and these are all distances from one cancer to another cancer.
Thus, the clustering approach described in the original paper
will not work as desired as new clusters will never be formed.

The problem is that the posted data have been baseline
subtracted (Fig. 1). The web page comments on this issue,
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Data Set 1 (Top), Data Set 2 (Bottom)

Cancer

Normal

Other

Clock Tick
4000 8000 12000

Cancer

Normal

Other

Fig. 2. Heat map of all 216 samples from dataset 1 (top), which were run on the H4 chip, and of all 216 samples from dataset 2 (bottom),
which are the same biological samples as dataset 1, just run on the WCX2 chip. The gross break at the ‘benign disease’ juncture in dataset 1,
and the similarity of the profiles to those in dataset 2, suggests that a change in protocol occurred in the middle of the first experiment.

noting that ‘this process creates negative intensities’. But a
more serious problem is that this correction is an irreversible
nonlinear operation. Given only the baseline-subtracted val-
ues, it is impossible to reconstruct the raw values. It is possible
to turn off the baseline correction within the Ciphergen soft-
ware if the raw binary files (XPT files) are supplied, but this
approach cannot be taken using just the text files at hand. This
problem prevented reproduction of their results for the first
and second ovarian datasets. We were able to reproduce their
results on dataset 3, which was not baseline-corrected.

Sample processing differences cause blatant
changes
The algorithm used in the original study was able to identify
the 16 benign disease samples in dataset 1 as ‘other’ than
normal or cancer. A ‘heat map’, in which all the spectra are
plotted side-by-side and regions of higher intensity are shown
by darker bands, is shown for the 216 spectra from dataset 1
in Figure 2 (top).

The benign disease spectra at the bottom are clearly dis-
tinct from the rest. Indeed, the cancer spectra and normal
spectra show far greater similarity to each other than either
does to benign disease. Conversely, the 216 spectra from
dataset 2, shown in Figure 2 (bottom), do not show such a

separation. Because these are the same biological samples,
run on a different kind of ProteinChip array, this lack of sep-
aration is disturbing. Considering both image maps together,
however, we see that the benign disease spectra from dataset 1
have profiles that are extremely similar to those of data-
set 2. This observation suggests that there was a change in
protocol before the first set was complete. This is disturb-
ing, as the Lancet article states that ‘positives and controls
were run concurrently, intermingled on the same chip and
on multiple chips; the operators were unaware of which
was which’.

We considered the possibility that an error had been made
when the datasets were prepared for posting to the web, and
that the benign disease spectra posted as part of dataset 1 were
actually the same spectra posted with dataset 2. To test this
possibility, we compared the numerical values in the spectra.
We found that none of the benign disease spectra in dataset 1
were numerically identical to any of the benign disease spectra
in dataset 2.

Dataset 3 is offset relative to dataset 2
To see if we could generalize results across experiments,
we tried to view datasets 2 and 3 (which used the same
chip type) simultaneously. Even though dataset 2 was
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Data Set 2, Whole Spectra

6825 9625

(a)
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(b)
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(d)

DS3
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Fig. 3. An attempt to align the spectra from datasets 2 and 3. (a) The whole spectra from dataset 2, with two of the high mass peaks identified.
(b) Zoom on the left peak region for dataset 2 and (c) zoom on the same peak region for dataset 3. (d) and (e) show the corresponding zooms
for the right peak region. There is clearly an offset between datasets 2 and 3. The x-axis in all of the plots indicates the clock tick (of 15 154);
corresponding m/z offsets are more than 1%.

baseline-corrected, we hoped to use qualitative features of
the spectra to assess similarity. We attempted to match the
indices of the major high intensity peaks for comparison. We
found that the spectra from dataset 3 were offset by roughly
50–60 clock ticks from the spectra in dataset 2 (Fig. 3).

Converting into the m/z scale, an offset of this magnitude
corresponds to an imprecision of more than 1%. However, the
stated mass accuracy of the SELDI procedure is 0.1%.

In order to bring datasets 2 and 3 to better agreement, we fit
a quadratic offset to the masses of dataset 3 by least squares
using four peaks for calibration. The four peaks were chosen
from the average spectra for datasets 2 and 3, at time indices
(6773, 7269, 9566, 10 260) in dataset 3 and (6823, 7321,
9632, 10 337) in dataset 2, respectively. Matching at these
four peaks introduces an offset of nearly 200 Da at the low
end of the m/z region.

Separating feature sets are not reproducible
across experiments
For results to be generalizable, feature sets found to be useful
in one experiment should also be useful in another experiment.
Because the chip surface was changed between dataset 1 and
datasets 2 and 3, the results from the first experiment cannot be

compared with those of the other two. Because datasets 2 and
3 share a common chip surface, we assumed they should be
comparable. The feature set reported for dataset 2 contains five
features. When we computed the distance matrix for dataset 3
using the intensities at these five features, the distance matrix
clearly showed that the cancer samples and the normal samples
had not been split apart (Fig. 4b).

The problem is not remedied by including either a linear or
a quadratic offset term to correct for the calibration problem
noted above; the distance plots produced are qualitatively
similar to that shown in Figure 4b (offset data not shown). Test-
ing the validity of the features found by analyzing dataset 3
by applying them to dataset 2 is more difficult, because of the
baseline correction applied to dataset 2. Thus, we checked the
results one feature at a time. There were seven features repor-
ted for dataset 3. We found the single feature at m/z 435.46
to be the most useful in terms of splitting the cancer samples
from the normal samples in dataset 3. Checking the shapes
of the spectra in this local region for both datasets, we found
that there was clearly a visible separation between the sample
types associated with the slope of a peak in dataset 3. How-
ever, not only is there no clear separation in dataset 2, but the
shape in the region is no longer that of a peak but rather that
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Distances Between Samples, Data Set 3, Their Features

Cancer Normal

Data Set 3 Distances, Using Features From Data Set 2

Cancer Normal

Fig. 4. (a) Distance matrix using the seven peaks identified for dataset 3. The separation between cancer spectra and normal spectra is obvious.
(b) Euclidean distance matrix for dataset 3 using the five peaks identified for dataset 2. The structure is effectively random, and there is no
clear separation between cancers and normals. The dataset 2 peaks do not separate dataset 3 well.
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Fig. 5. The region of the best separating peak for dataset 3, shown for both dataset 3 and dataset 2. While this value does a good job of
separating cancers from normals in dataset 3, producing a visible peak, the corresponding region in dataset 2 shows evidence of local saturation
(at tops) and reverse behavior with respect to what is high and what is low.

of a valley. Moreover, there is clear evidence that the spectra
were locally saturated before baseline subtraction (Fig. 5, flat
regions of high intensity).

We found similar lack of agreement for the other features
(data not shown). Again, we attempted to correct the situation
by including an offset term. This did not result in qualitatively
better agreement (we tried linear offsets of 50, 55 and 60

clock ticks and the quadratic fit described above; data not
shown).

We can achieve perfect classification with noise
If the only measure of fitness is classification accuracy, then
the search algorithm will not converge if there exist mul-
tiple feature sets that classify the data perfectly. We elected
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Table 1. Two-sample t-values for the normal/cancer separation in dataset 3
at the 7 m/z values supplied on the website

m/z 435.46 465.57 2760.67
t-value 22.346 −12.534 1.498

3497.55 6631.70 14051.98 19643.41
5.954 −3.501 6.081 −0.476

to search for the presence of such sets in dataset 3. We ini-
tially processed the data as described, but we noted very little
change when we looked at how the normalization method
affected the data. Of the 253 spectra in dataset 3, all but one of
the spectra has a maximum recorded intensity of 100, indic-
ating saturation of the signal. The remaining sample has a
maximum intensity of 99.7486. The corresponding minimum
intensities are almost all between 3.8 and 3.9, with no val-
ues falling outside the interval [3.75, 3.96]. In light of this,
we elected to work with the raw spectra (with no correction
at all).

We searched for the single features and pairs of features that
best separated normals from cancers. In order to restrict our
attention to the features most likely to achieve good separa-
tion, we applied a two-sample t-test to the difference between
cancer samples and normal samples for every m/z value in
dataset 3. We paid special attention to the 7 m/z values sup-
plied on the website. The most extreme t-values are huge
in magnitude, with the largest in the list of seven occur-
ring at m/z 435.46, where the t-value is 22.3463. Using the
intensities at this single feature, we correctly classified 238
of the 253 samples. We note that this is the same value that
failed to separate the spectra in dataset 2. Looking at the
t-values for the seven reported m/z values individually sug-
gests that the first two are more important than the others
(Table 1). Using the t-values to suggest particularly interesting
features, we were led to several values not in the initial list.
The most extreme t-value, −27.0256, occurs at m/z 245.2,
and the best single classifier is at m/z 244.9524 (with a
t-value of −26.0531), where we misclassified only five of the
samples.

Looking only at the individual features where large
t-statistics (|t | > 10) were observed, we considered the sep-
arations possible using only pairs of features. We quickly
found two distinct pairs where perfect separation was pos-
sible using a straight line in Euclidean space. The first pair
of m/z values is (435.46, 465.57), which are the first two val-
ues in their list of seven. Both masses are less than 500. The
second pair of m/z values is (2.79, 245.2), with t-values of
(−13.89, −27.0256), respectively. These two m/z values are
clearly in the noise region; the first may be in the range before
the instrument is recording stably.

The fact that there is structure in the noise has recently been
discussed in depth by Sorace and Zhan (2003).

Another analysis
We performed an independent analysis of dataset 3, to see
if the features we identified would coincide with theirs.
Details of our processing (baseline correction, normaliza-
tion and peak selection) are available from our website,
http://bioinformatics.mdanderson.org. After processing, we
performed two-sample t-tests to determine how well each
individual peak distinguished the cancer samples from the
normal samples. We visually inspected all peaks with abso-
lute t-value greater than 12 and identified nine significant peak
regions, with m/z values equal to: 64, 245, 434, 618, 886,
1531, 3010, 3200 and 8033. Only one of these peaks (m/z 434)
also appears on their list. There are several good separators
above the noise region of the spectra, and we believe that good
separation could be achieved using only these, but we are still
suspicious of these results here given the structure in the noise.

The first four peaks on our list are located well below the
end of the matrix noise region in a part of the spectrum where
saturation commonly occurs. None of the peaks that we found
generalized to dataset 2.

The mass calibration for all three datasets is
suspect
We noted earlier that the vectors of m/z values supplied for
all three datasets were the same. As these values are derived
from the calibration equation relating time-of-flight to m/z,
this identity implies that the same mass calibration was in
place throughout, over a period of several months. We then
looked more closely at the precise m/z values. The first few
such values are −7.86E − 05, 2.18E − 07, 9.60E − 05,
0.000366014 and 0.000810195. We note that these are the
precise values that the Ciphergen software coming with our
PBS-II instrument returns when we use the factory default
calibration settings, which apply before a calibration sample
has been run.

DISCUSSION
In an effort to understand better the biological structure behind
these results, we reanalyzed the data on the website from both
the initial experiment and from two subsequent experiments
on ovarian cancer. Unfortunately, instead of clarifying the
issue, our analysis uncovered a series of problems suggesting
a lack of agreement across experiments.

We found that baseline correction prevented reproduction
of their initial results, suggesting that the initial analysis was
performed on the raw spectra. Baseline correction also inter-
acts with their chosen method of normalization. Normalizing
to the range of the baseline-corrected spectra is driven by the
noise level in the matrix noise region as opposed to the natural
zero intensity level of the instrument, and introduces visible
offsets that persist for the length of the spectra.

We believe some form of baseline correction is useful.
Baselines of different spectra can be highly variable. They
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change from instrument to instrument and from day to day on
the same instrument. In general, the baseline signal is caused
mostly by chemical noise from matrix molecules, with some
contribution from electronic noise (Fung and Enderwick,
2002; Baggerly et al., 2003). The matrix noise contribution
to the baseline signal is largest in the low m/z region. Given
this, our inability to reproduce their analysis using the posted
data is worrisome. First, it shows that the reported results are
not robust enough to withstand baseline subtraction. Second,
it suggests that matrix noise in the low m/z region may be
driving some of the structure.

Just because we cannot reproduce their results in datasets 1
and 2 does not mean that there is no structure to be discerned.
Comparing datasets 1 and 2 showed that there was a change
in protocol in the middle of dataset 1. One example of a
protocol change that could produce the observed results is
a shift between chip types. Different chip surfaces, by design,
bind different sets of proteins. Alternatively, maintenance or
replacement of critical portions of the Ciphergen instrument
itself could cause similar changes that would be reflected in
the need to recalibrate the formulas that transform the meas-
ured time-of-flight into estimates of the mass-to-charge ratio.
Such technological differences can give rise to real differ-
ences in the spectra, but these differences are not biologically
interesting.

We observed an offset between datasets 2 and 3 that was sub-
stantially larger than the nominal precision of the procedure.
The observed offset between the datasets calls into question
the stability of the procedure. A shift of this magnitude could
cause the same protein to be identified differently in the two
different experiments, obscuring the biology.

We were unable to use features from dataset 2 to separate
normals from cancers in dataset 3, which uses the same chip
type. Part of this is due to the calibration problem, but this is
exacerbated by the fact that most of the features reported are
in the very low m/z range for all three datasets. The low mass
range is prone to unstable calibration and to other artifacts
such as signal saturation. We note that the features supplied
for dataset 1 are also in the lower end of the mass range.

We were able to find multiple feature sets that perfectly clas-
sified the samples in dataset 3, and at least one such feature
set that lies wholly in the noise region of the spectra. The fact
that we can achieve perfect classification based on readings
entirely in the noise region, however, is evidence of a prob-
lem. There can be no biological reason for the difference at
m/z 2.79: It is pure instrument artifact. The presence of such
an artifact suggests that there was a systematic difference in
the way the groups of samples were processed. There should
be no pattern in the noise region, and perfect separation of
so many samples is essentially impossible by random chance
alone. Structure in noise, by itself, is mildly disturbing. When
combined with other findings that the systematic differences
caused by the technology can be large compared with the bio-
logical differences, the presence of this structure ‘raises the

bar’ that features elsewhere in the spectra must pass in order
to be considered biologically meaningful.

The reported m/z values correspond to those that would be
supplied if no external calibration had ever been applied to the
system. This is a problem, in that the mass values are likely to
be inaccurate, and can differ by substantially greater amounts
than the nominal accuracy of the instrument (which presumes
regular calibration) would imply. Calibration appears to be
something of a ‘stealth issue’. It can introduce offsets between
labs even if both labs have calibrated their spectra, if, e.g.
different choices are made for the calibrants employed. This
problem is worse if the m/z values need to be extrapolated
beyond the observed mass range of the calibrants. This issue
of extrapolation is another reason why the very low mass
range of the spectra is suspect, as the mass predictions can
be unstable.

It is important to note that there are many aspects of this
study that we applaud, and had we been consulted, we would
have likely supported the publication of the first data set based
on the separation rates achieved. (We hope that we would have
detected the anomalous status of the benign disease samples
before publication, but we are not certain of it.) The ran-
domized 4 × 50 design with validation (50 of each group
for training; 50 of each for validation) should have been
adequate to detect real features—features that generalize from
one dataset to another—capable of distinguishing between the
two groups of samples. It is only because the original authors
have posted multiple datasets repeating the same basic experi-
ment that the difficulty of obtaining reproducible results from
this technology can be investigated.

The use of proteomic patterns in spectra to distinguish can-
cer samples from normal samples is a ‘black box’ approach to
the problem. Serum samples enter at one end of the black box;
they pass through a complex process of protein extraction,
sample preparation, mass spectrometry and bioinformatic
analysis; finally, a diagnosis emerges from the other end of
the black box. Reproducibility of the proteomic patterns is
critical to the success of this approach. The black box must
yield the same results today and tomorrow; in a laboratory in
Washington and a laboratory in Houston; on samples from the
Mayo Clinic and on samples from the M.D. Anderson Cancer
Center. The black box approach must rely on reproducibility
because it does not provide an explanation or a mechanism
to bolster its diagnosis. Consequently, the findings cannot be
verified using independent technologies.

To achieve the level of reproducibility required for a suc-
cessful black box approach to the diagnosis of cancer, careful
attention must be paid to measuring and controlling sources
of variation in the procedure. A (very) incomplete list of
such sources includes time (since results from a single instru-
ment can drift), temperature, humidity, the instrument used
and the laboratory in which the experiment is conducted.
A more complete list must be established, and experiments
must be performed to estimate the magnitude of each effect.
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A good start in this direction is provided by Cordingley et al.
(2003). Whenever possible, standard protocols should be
drawn up to minimize the effect of irrelevant sources of vari-
ation. Sources that cannot be controlled must be repeatedly
measured to account for them. Samples where these condi-
tions have been altered should be included in the training
set so that these changes do not drive the classification. The
goal, of course, is to prevent major technological differences
from overwhelming the biology associated with the outcome
of interest.

Careful experimental design can help. By randomizing the
samples, we can ensure that uninteresting factors—changes
in the instrument calibration, differences in chip quality, vari-
ations in the reagents—affect both kinds of samples equally
and thus are not accidentally detected as biological differ-
ences. Keeping the operators blinded to the nature of the
samples can also help ensure that systematic differences in
processing do not occur inadvertently. (Ideally, ‘operators’
here includes everyone who handles the sample from the
nurse drawing blood to the technician performing the mass
spectrometry.)

Results must also be carefully calibrated and revalidated
after every shift in protocol. The same samples must be
processed using both versions of the protocol, and the clas-
sification results confirmed. The results should remain robust
with respect to major changes that are likely to occur but which
noticeably affect the spectra.

On the analytical side, even within the black box paradigm,
we believe that there are better ways to approach the ana-
lysis of proteomic spectra. For example, processing steps such
as baseline correction are necessary with the current techno-
logy, since matrix distortions are often severe. Normalization
is necessary after baseline correction, and the matrix noise
region should be excluded. Dimension reduction by peak find-
ing is useful, especially since many of the best ‘separators’
tend to occur on the slopes of peaks rather than at the peaks
themselves. (The gains in separability are slight and more than
offset by the lack of interpretability.) Finally, we think that
there are some problems with the fitness function and cluster-
ing methods described in Petricoin et al. (2002). Specifically:
classification accuracy is the only measure of fitness used. No
additional weight is given for larger separation, and no penalty
is assessed for larger numbers of clusters. Euclidean distance
does not adjust well to scale differences at different intensit-
ies. Thus, a consistent difference that is smaller in magnitude
will be missed. The distance cutoff at 0.1 ∗ √

N is ad hoc.
Finally, in jumping immediately to dimension 5 and higher,
we miss the chance to find simpler explanations if such exist.
While more involved statistical techniques can indeed find
evidence of complex structure, low-dimensional approaches
using simple tests should be tried first. Given adequate sample
sizes and randomization, if the data are properly processed

then various methods will find the structure of interest if it is
there to be found.

The above discussion is predicated on the assumption that
the black box approach is preferred. This assumption is ques-
tionable. We suspect that pursuit and identification of some
of the proteins involved in differentiating the samples might
yield diagnostic tests that can be verified using other techno-
logies and that are more generalizable to new datasets. This
alternative approach also holds out the promise of provid-
ing explanations of the biological mechanism underlying the
disease process.

Proteomic spectra are promising for scientific discovery.
But sufficient external noise can lead to false discovery.
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