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An important aspect of the QTL mapping problem is the treatment of missing genotype
data. If complete genotype data were available, QTL mapping would reduce to the problem
of model selection in linear regression. However, in the consideration of loci in the intervals
between the available genetic markers, genotype data is inherently missing. Even at the
typed genetic markers, genotype data is seldom complete, as a result of failures in the geno-
typing assays or for the sake of economy (for example, in the case of selective genotyping,
where only individuals with extreme phenotypes are genotyped).

In standard interval mapping, one deals with the missing QTL genotype data by per-
forming maximum likelihood under a mixture model, using a version of the EM algorithm.
Central to this approach is the calculation of the distribution of QTL genotypes conditional
on the observed multipoint marker data. In the pseudomarker algorithm, which uses a
form of multiple imputation, one must be able to simulate from the joint distribution of the
genotypes at the pseudomarkers, conditional on the observed marker data.

In this chapter, we discuss the use of algorithms developed for hidden Markov models
(HMMs) to perform the tasks mentioned above and thus deal with the missing genotype
data problem. Simpler approaches can and have been used. For example, in a backcross
in the absence of genotyping errors, the QTL genotype probabilities, conditional on the
marker data, are a simple function of the genotypes at the nearest flanking markers. The
more refined algorithms described here have several advantages. First, we may allow for
the presence of genotyping errors. Second, we may more easily deal with partially informa-
tive genotypes. (For example, in an intercross, at some markers the heterozygote may not
be distinguishable from one of the homozygotes.) Third, the bookkeeping tasks in imple-
menting these algorithms can be more simple. Fourth, the algorithms can be more easily
extended to more complex experimental crosses (such as the four-way cross).

In the next section, we define hidden Markov models in the context of the analysis of
experimental crosses. In the following sections, we describe the basic algorithms for calcu-
lating QTL genotype probabilities, simulating from the joint distribution of QTL genotypes,
constructing and estimating genetic maps, and identifying genotyping errors. We conclude
the chapter with a discussion of a practical issue in the implementation of these algorithms
in computer programs.

0.1 Specification of the model

A Markov chain is a collection of random variables, {G1,Go,...,Gy}, satisfying the
Markov property Pr(Gi+1|Gi, - .., G1) = Pr(Gi+1|G;) for all 7. In a Markov chain, for any 1,
the “past,” {G1,...,Gi—1}, and the “future,” {Gj;1,...,Gy}, are conditionally independ-
ent, given the “present,” G;. We focus on Markov chains for which the random variables
{G;} take values in a common, finite set, .

A hidden Markov model (HMM) consists of an unobservable underlying Markov chain,
{Gi}, and a set of observable random variables, {O;}, where each O; depends only on G;.



In other words, for each i, O;, given G;, is conditionally independent of everything else,
{01, ..., Oi—1, Ojs1, ..., O, G1, ..., Gi_1, Giy1, ..., Gy }. It may be useful to keep in
mind the following picture.
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The hidden states, G;, take values in a common, finite set, G; the observed states,
O;, take values in another finite set, O. The joint distribution of the O; and G; in the
HMM is parameterized by three sets of probabilities, which we will call the initiation,
transition and emission probabilities. The initiation probabilities define the distribution
of the initial hidden state: 7(g) = Pr(Gi = g) for g € §. The transition probabilities
complete the specification for the joint distribution of the underlying, hidden Markov chain:
ti(9,9') =Pr(Giy1 = ¢'|Gi =g) fori=1,...,n—1and g,¢' € §. The emission probabilities
concern the conditional distribution of the observed states given the hidden states: e;(g,0) =
Pr(O; =0|G;=g)fori=1,...,n,9 € G, and 0 € O. We will assume here that the emission
probabilities are homogeneous, with e;(g,0) = e(g, o) for all 7, g, 0.

We now begin to consider the application of HMMs to experimental crosses. Below, we
will describe the backcross and intercross specifically, but first we define the relevant HMM
in some generality.

One may focus on the genotypes for a single individual at a set of loci on a single
chromosome. (We will focus on an autosome.) We let G;, i = 1,...,n denote the true
underlying genotypes for the individual at a set of n ordered loci, and let the O; denote the
observed marker “phenotype” at locus %.

These loci may be genetic markers, or they may be “pseudomarkers,” under considera-
tion as putative QTLs. The genotypes are often assumed to be phase-known genotypes,
though for the intercross they need not be, as we will see below. Under the assumption
of no crossover interference in meiosis, for many types of crosses, the G; form a Markov
chain. The set G corresponds to the possible values of these phase-known genotypes. The
initiation probabilities correspond to a segregation model at a single locus; the transition
probabilities are a function of the recombination fractions, r;, between adjacent markers.

The set O corresponds to the set of possible observed marker phenotypes, which will
include the possibility of missing values and partially informative phenotypes (such as in
the case of a dominant or recessive marker). The emission probabilities involve a model for
errors in genotyping, which we will assume to be common across markers, though in reality,
some markers are considerably more error-prone than others. It is important to point out,
further, that one conditions on the observed pattern of missing data. This will become
more clear below.
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0.1.1 The backcross

Consider a backcross individual derived from two inbred strains, A and B, where the F
parent was crossed back to the A strain. We let § = {AA, AB}, the possible genotypes at
a locus. The set of possible marker phenotypes is O = {4, H, —}, with the last symbol cor-
responding to a missing value. Note our attempt to use different symbols for the underlying
genotypes and the observed marker phenotypes.

The initiation probabilities, assuming Mendel’s rules, are simply 7w(AA) = n(AB) =
1/2. The transition probabilities are ¢;(AA, AB) = t;(AB, AA) = r;, where r; denotes the
recombination fraction between loci ¢ and 7 + 1. Of course, t;(AA, AA) = t;(AB,AB) =
1-— T;-

In forming the emission probabilities, we assume a constant error rate in genotyping,
€, so that e(AA, A) = e(AB,H) =1 —¢, and e(AA, H) = ¢(AB, A) = e. We condition on
the observed pattern of missing data, and so e(AA, —) = e(AB, —) = 1. One may consider
— ={A or H}, so that e(AA,—) = e(AA,A) + e(AA,H) = 1.

One may consider, in forming the emission probabilities, more refined models for geno-
typing errors. For example, one may consider a locus-specific error rate, and one may allow
the chance of a heterozygote being erroneously observed as a homozygote to be somewhat
different than the converse. However, we have seen little benefit in such refinements.

0.1.2 The intercross

Consider a single individual in the Fy generation from an intercross between two inbred
strains, A and B. One may consider the hidden states, GG;, to be either phase-known geno-
types (with four possible states, {AA, AB, BA, BB}) or phase-unknown genotypes (with
three possible states, {AA, AB, BB}). It is an interesting and useful fact that in either case
the G; form a Markov chain (under the assumption of no crossover interference).

We will focus on the phase-unknown case, with § = {AA, AB, BB}. The initiation
probabilities are again those implied by Mendel’s rules: 7(AA) = n(BB) = 1/4, n(AB) =
1/2. The transition probabilities were described in Chapter 2 [?] and are displayed in the
Table 1, where r; denotes the recombination fraction between markers ¢ and i + 1. Note
that we assume that there are no sex differences in the recombination fractions.

Table 1: The transition probabilities, t;(g,9') = Pr(Git+1 = ¢'|G; = g), for a phase-unknown
intercross.
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g AA AB BB
AA (1 — ’I'Z')Q 2’)"i(1 — ri) ’l",i2

AB ri(1—-m1) (Q—r)?+7r2 ri(l—1y)
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As possible observed marker phenotypes, we let O = {4, H, B,C, D, -}, with A, B, and
H corresponding to the two homozygotes and the heterozygote, respectively, — correspond-
ing to a completely missing value, and with C' and D allowing the treatment of dominant
marker loci: we define C and D as in the popular computer software, MAPMAKER (Lander
et al. 1989), with C = {not A} = {B or H} and D = {not B} = {A or H}.

The emission probabilities, for a simple genotyping error model, are shown in Table 2,
where we let € denote the genotyping error rate. Note that we again condition on the pattern
of missing genotype data, and so, for example, Pr(O; = C|G;) = Pr(O; = B|G;) + Pr(O; =
H|G;).

Table 2: The emission probabilities, e(g,0) = Pr(O; = o|G; = g), for a phase-unknown
intercross.

g A H B c D
AA 1-€¢ €¢/2 ¢/2 €/2 1—¢/2
AB €/2 1—€¢ €/2 1—¢/2 1—¢/2
BB €¢/2 €/2 1—€¢ 1—¢/2 €/2

— =

0.2 QTL genotype probabilities

Having set up the hidden Markov model for experimental crosses, we now begin our
discussion of the basic algorithms used in order to deal with missing genotype data in QTL
mapping. We begin with the calculation of the conditional QTL genotype probabilities given
multipoint marker data, which are critical for standard interval mapping with a single QTL
model. Using the notation developed in the previous section, we seek Pr(G; = ¢|O), where
O =(01,...,0,).

The brute-force approach for calculating this probability is to simply sum over all pos-
sible genotypes at the other loci.

PI‘(GZ = gZ\O Z Z Z ZPI‘ G'1 =49g1,- Gn = 9n|0)

—19i+1

x Z ZZ Z (g1 H 93a9]+11i[ e(95,0

-1 9i+1

For the phase-known intercross, with three possible genotypes, this is a sum with 37!
terms; clearly this is unwieldy and unnecessary. That there are simple algorithms for this
calculation, which make critical use of the conditional independence structure of the HMM,
is the primary motivation for the use of HMMs in experimental crosses.
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The approach we follow makes use of the following two sets of probabilities.
ai(9) = Pr(04,...,0;,G; =g)
,Bz(g) = PI‘(OZ'_H, e ,On|Gz = g)
Note that, once the a’s and £’s have been calculated, the probability that is the focus of
this section follows directly:
Pr(G; =g|0) = Pr(Gi=y4,0)/Pr(0O)
= ai(9)Bi(9)/ 2y cilg)Bi(g)-

The a’s and §’s are calculated inductively, using what are called the forward and back-
ward equations, respectively. We begin with the forward equations. First, note that

a1(g) = Pr(01,G1 = g) = n(g) e(g, 01).
Now, assume that we have calculated a;(g) for each g € G. Then we have

air1(g) = Pr(04,...,04,0i41,Giy1 = g)
= Y2y Pr(01,...,0;,0i41,Gi = ¢',Git1 = g)
= Yy Pr(04,...,0;,G; = ¢') Pr(Giy1 = g|Gi = ¢') Pr(0i11|Git1 = g)
= e(g,0i11) 2oy ilg') ti(g', 9)-
In the third line above, we made use of the conditional independence structure of the HMM,

noting that
Pr(Git1 = 9|Gi =4¢',01,...,0;) =Pr(Git1 = g|Gi = ¢')

and
Pr(0i1|Git1 = 9,Gi = ¢',01,...,0;) = Pr(O341]Giy1 = g)-
Calculation of the 8’s proceeds similarly, though starting at the other end of the chain.

We define £,(g) = 1 for all g € §. Assuming that we have calculated f;(g) for all g, we
have

Bifl(g) = PI‘(Oi,...,On|GZ’71 = g)
= 2y Pr(0is...,00,G; = ¢'|Gi1 = g)
= 2 g Pr(Oit1,... On|Gi = ¢') Pr(G; = ¢'|Gi—1 = g) Pr(0i|G; = ¢')
= Yy Bilg") ti—1(g,9") e(g', 0i).

Again, in the third line above, we made use of the conditional independence structure of
the HMM.

In summary, in order to calculate the QTL genotype probabilities, conditional on mul-
tipoint marker data, Pr(G; = g¢|0O), we make use of the forward and backward equa-
tions to first calculate, for each 7 and g, a;(9) = Pr(04,...,0;,G; = g) and Bi(g) =
Pr(Ojt1,...,0,|G; = g). These algorithms are extremely efficient and can accommodate
partially missing genotypes (such as are observed at dominant markers in an intercross)
and a model for errors in genotyping.



0.3 Simulation of QTL genotypes

Central to the pseudomarker algorithm for QTL mapping is the simulation of QTL
genotypes via their joint distribution conditional on the observed multipoint marker data.
In this section, we describe how this is done. One considers a single chromosome and a
single individual at a time. As will be seen, the simulation algorithm makes use of the
B’s defined in the previous section. Thus, one must first perform the backward equations
described above.

The algorithm is quite simple. One first draws g} from the distribution

a1(g)B1(g)
Pr(G; =¢|0O) = .
(1 =90 = 5 @15
Genotypes for further loci are drawn iteratively: having drawn g7,...,g;, one draws g7, ,

from the distribution

Pr(Giy1 = 9,Gi = g;|0)
Pr(G; = g7]0)
ai(g;) ti(gf, g) e(g, Oit1) Bi+1(g)
ai(g7)Bi(g7)
ti(97,9) e(9,041) Bir1(g)
Bi(gy) '

We are again making critical use of the conditional independence structure of the HMM.

Note that the a’s are not needed, except for a;(g) = 7(g) e(g,01). Thus the forward
equations need not be performed. For each individual, one first uses the backward equations
to calculate the §’s and then simulates the chain from left to right, using the equations
above. It should be no surprise that one may instead use the forward equations to calculate
the a’s, and then simulate the chain from right to left, using formulas analogous to those
above.

Pr(Giy1 = 9|0, G; = gf)

0.4 Joint QTL genotype probabilities

In multiple interval mapping (MIM) with multiple linked QTLs, it is important to
calculate joint QTL genotype probabilities, conditional on the observed multipoint marker
data.

We begin by describing the calculation of Pr(G; = g, G; = ¢'|O) for all ¢, j with i < j.
As will be seen, one must first calculate the o’s and §’s defined above. One may start by
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calculating the case j =i+ 1 foreach 1 =1,...,n — 1, as follows.

Pr(Gi = 9,Git1 = ¢'10) o« Pr(G;=g,Giy1 =¢',0)
= Pr(0y,...,04,G; = g) Pr(Giy1 = ¢'|Gi = g)
X Pr(0;11|Giz1 = ¢) Pr(Oisa, ..., 04|Giv1 = ¢)
= ai(g) ti(g,9') elg', Oiz1) Bira(g)

One uses the final line above and rescales the results so that they sum to 1.
The rest of the pairwise probabilities follow with the standard technique, using induction.

Pr(G; = ¢,G; = 4¢"10) = ZPr i=9,Gj1=¢",G;=4|0)

= ZPT i=9,Gj-1=4"|0)Pr(G; =¢'|Gj-1=g",0)

Finally, one may wish to calculate the joint probabilities for multiple linked loci, condi-
tional on the observed multipoint marker data. Again, the conditional independence struc-
ture of the HMM makes this a simple task: the joint distribution may be calculated based on
pairwise probabilities whose calculation was described above. Consider i1 < 1o < ... < g,
with each i; € {1,...,n}; we have

PI‘(GZ'1 =gly---, sz = gk|0) =
k-1
Pr(Gi, = g1,Gi, = 92|0) [[ Px(Gyy,, = 9j11|Gy; = g5, 0).
=2

The equations in this section do get a little bit complicated, but they are all formed of quite
simple pieces. The central calculation is the use of the forward and backward equations to
obtain the a’s and §’s.

0.5 The Viterbi algorithm

Discuss the Viterbi algorithm for calculating (¢ = arg maxg Pr(G|0). Mention the
problems that occur, especially when allowing for genotyping errors: the results can depend
greatly on the “step size” when one allows the possibility of genotyping errors.

I could write a page on Viterbi and another page or two on some problems that arise,
but I'm leaning towards scrapping it. Keeping it in might be valuable for the sake of
completeness, but I don’t think it would be greatly missed if left out.

In any case, I’ll leave it to later, after receiving some feedback on the rest of this chapter.



0.6 Estimation of inter-marker distances

The calculations described above depend crucially on the order of the genetic markers
and the recombination fractions between adjacent markers (i.e., the inter-marker distances).
In this section, we describe the derivation of joint maximum likelihood estimates (MLEs) of
the recombination fractions between genetic markers, assuming that the order of the genetic
markers is known. In the next section, we will briefly consider the more difficult problem
of determining marker order.

Taking the order of the genetic markers as fixed and known, the probability of the
observed marker data for an individual, Pr(O), still depends on the recombination fractions
between adjacent markers. For the sake of simplicity, this dependence has been neglected in
our notation heretofore. Moreover, we have been considering a single individual at a time.
In our discussion of the estimation of inter-marker distances, however, it will be important
to make this dependence clear. Let » = (ry,...,7,—1 denote the set of recombination
fractions, and let Oy denote the observed marker data for individual k, for k =1,..., N.

We seek the MLE of 7, defined to be the value of  for which the likelihood is maximized,
7 = argmax L(r), where L(r) = chvzl Pr(Og|r). These estimates are obtained using a
version of the EM algorithm (Dempster et al. 1977).

We begin with initial estimates of the recombination fractions, #0). The EM algorithm
is an iterative algorithm: the estimated recombination fractions are successively improved,
increasing the likelihood at each stage, until convergence. In each iteration, the updated
estimates of the recombination fractions are the expected proportions of recombination
events, across the NV individuals, in each marker interval, given the current estimates of the
recombination fractions.

At each iteration, we first perform the forward and backward equations for each indi-
vidual, using the current estimates of the recombination fractions, 7). We then calculate,
for each interval 7, yi(g, ¢'|#*) = Pr(Gk,i = 9,Griy1 = ¢'|O, #(5)). This is the probability
that individual k£ has genotypes g and ¢’ at markers 7 and i+ 1, given its multipoint marker
data, and given the current estimates of the recombination fractions. The calculation of the

v’s, based on the a’s and 8’s for the corresponding individual, appears in Section 0.4.
A(s+1)
7 =

Dok 2g.q VeilG ¢'1#®)) p(g,¢')/N, where p(g,g') is the proportion of recombination events
across the interval (i.e., 0, 1/2, or 1) if the individual has genotypes g and ¢’ at the markers
defining the interval. Note that, in estimating the inter-marker distances for an intercross,
we use the phase-known (4-state) version of the HMM, so that the function p(g,g’) is well
defined.

The updated estimate of the recombination fraction for interval i is then

0.7 Construction of genetic maps

In the previous section, we described the estimation of inter-marker distances in the case
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the order of genetic markers was fixed and known. In this section, we briefly describe the
preliminary problem of constructing genetic maps (i.e., forming linkage groups and ordering
genetic markers).

Note: after thinking a bit about this section, it seems to me that it will easily get out
of control. A thorough description of the map construction problem could be a chapter in
its own right, and would definitely be getting off the point of the book. More important, I
think, would be a description of basic diagnostics for marker order, and a discussion of the
impact of errors in marker order on the results of QTL mapping, though I'd not planned
to touch on that at all.

Rather than spend time putting this together now, I’ll simply give what I see as the
outline of the map construction process. I don’t want to waste time writing material that
will get trashed.

1. Estimate recombination fractions between all pairs of markers; also calculate, for each
pair, a LOD score for the test of r = 1/2.

2. Use the results of (1) to form linkage groups. The usual procedure is to form sets
of markers such that for each marker, 7, in the set, there exists at least one other
marker, j, in the set, such that LOD(i,j) > T, for some threshold T, and there are
no markers, k, outside the set with LOD(3,k) > T

3. Consider a single linkage group. Form an initial marker order by a greedy algorithm.
This requires the ability to (a) estimate inter-marker distances and (b) calculate the
likelihood for any particular marker order.

4. Investigate other possible orders, either by permuting adjacent markers within a slid-
ing window, or by something like simulated annealing.

5. While performing (3) and (4), consider dropping markers from a linkage group and
moving them to some other linkage group.

0.8 Detection of genotyping errors

Successful QTL mapping requires high quality phenotype and genotype data. In this
section, we describe an approach for identifying errors in the genotype data. For each
marker and each individual, we calculate a LOD score, with large LOD scores indicating
likely errors.

The presence of partially informative genotypes (e.g., at dominant markers in an in-
tercross) makes this slightly tricky. Let us assume that the observed marker phenotypes,
o € O are subsets of the possible underlying marker genotypes, §. For example, in the
case of an intercross, where § = {AA, AB, BB}, the set of possible marker phenotypes is
0 ={A,H,B,C,D,—}, with, for example, A = {AA} and C = {AB, BB}.
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Let Gg; denote the true underlying genotype for individual k£ at marker ¢, and let Oy;
denote the corresponding marker phenotype. We assume the simple model for genotyping
errors that was described in Section 0.1, and we assume the genotyping error rate, ¢, is
known. We seek to calculate

Pr(O|Gyi & Oki,€)

Pr(O‘Gki S Oki,ﬁ)}

log {PT(GM ¢ Oi|O, €) o 1= 6}
10 PI‘(G/W' € Oki\O,e) €

Note that the calculation of the probabilities in the above formula was described in Sec-
tion 0.2.

These LOD scores depend on the specified genotyping error rate, €, but typical values,
in the range 0.001 — 0.02, do give similar results. Genotyping error LOD scores below 3 or
4 are generally benign. Only when the LOD scores exceed 4 should they be given much
consideration. It should be noted genotyping errors can only be detected in the case of quite
dense markers. At the same time, however, genotyping errors have little effect on the result
of QTL mapping if the markers are not dense. Finally, if a particular marker gives many
large error LOD scores, it may be that a problem with marker order is the cause (though,
of course, the marker may also have a greater than typical frequency of errors.)

LODy; = loglo{

0.9 A practical issue

In the case of many genetic markers (or pseudomarkers), the direct calculation of @ and
B, as described above, will result in underflow: «,(v) = Pr(O4,...,0,,G, = v) can be
extremely small. One method to deal with this is to calculate o/ = loga and ' = log 3. In
the forward equations, we must obtain o, ;(g) = loge(g, Oi1+1) + log{>_  ci(g')ti(¢", 9)}
This leads to the problem of calculating log(f1 + f2) on the basis of g; = log f;, which may
be facilitated by the following trick:

log(f1 + f2) = log(e +e?)
= log{e” (1+ %2 %)}
= g1 +log(l+e?27%)
A problem occurs when go > g;: the above formula will result in an overflow. In such a
case one simply notes that log(f1 + f2) = go-

Note: we should probably mention the approach described by Rabiner (who uses re-
scaling) and the alternative formulation of Churchill (1989).

0.10 Further Reading
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Baum et al. (1970) were the first to describe estimation for hidden Markov models, and
derived the forward and backward equations. For other expositions of the use of HMMs,
see Rabiner (1989) or Section 23.3 of Lange (1999).

Churchill (1989) was the first to use HMMs explicitly in biology. HMMs have been used
for a variety of biological applications, including the analysis of patch-clamp recordings for
the study of ion channels (ref), multiple sequence alignment (ref), and protein structure
prediction (ref).

Lander and Green (1989) described the multipoint estimation of genetic maps; their
method was implemented for experimental crosses in the software MAPMAKER, (Lander
et al. 1989). Jiang and Zeng (1997) described an alternative approach for dealing with
missing and partially missing genotype data. Lincoln and Lander (1992) developed the
LOD scores, defined above, for identifying genotyping errors in experimental crosses.

I believe the trick described in the last section has been routinely used in calculations
with the decibel scale. (However, I don’t have a good source. I'm sure this trick has been
described elsewhere—it’s too useful to not be well known—but I haven’t been able to find
any references.)
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