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ABSTRACT Human genetic linkage maps are most accu-
rately constructed by using information from many loci simul-
taneously. Traditional methods for such multilocus linkage
analysis are computationally prohibitive in general, even with
supercomputers. The problem has acquired practical impor-
tance because of the current international collaboration aimed
at constructing a complete human linkage map of DNA
markers through the study of three-generation pedigrees. We
describe here several alternative algorithms for constructing
human linkage maps given a specified gene order. One method
allows maximum-likelihood multilocus linkage maps for dozens
of DNA markers in such three-generation pedigrees to be
constructed in minutes.

A fundamental problem with constructing genetic linkage
maps in humans is that important data are often missing.
Whereas a Drosophila geneticist may arrange crosses to
avoid or resolve any potential ambiguities, human geneticists
must take crosses as they find them in natural populations.
Human geneticists thus cannot simply ‘‘count recombi-
nants’’ in a cross, since they typically lack the information
needed to identify unambiguously where recombination
events occurred. The reasons are three: (i) Parents are
typically homozygous, and thus uninformative, for some of
the loci of interest. (ii) Even where parents are heterozygous,
it is often unknown which alleles at various loci are in cis and
which are in trans (i.e., the linkage phase is unknown). (iii)
Genotype cannot always be uniquely inferred from pheno-
type.

To address this problem, Fisher (1), Haldane and Smith (2),
and Morton (3) developed a theoretical approach based on
the method of maximum likelihood: considering all possibil-
ities for the missing data, map distances are chosen to
maximize the probability that the observed data would have
occurred. When no data are missing, the approach reduces to
counting recombinants. Elston and Stewart (4) proposed a
general algorithm for computing the required likelihoods.
Using this algorithm, Ott (5) produced a computer program,
LIPED, that allowed a geneticist efficiently to determine the
recombination fraction 6 between a pair of genetic loci. The
dearth of adequately polymorphic human genetic markers
made it unnecessary to consider any but two-point crosses.

Recent advances in molecular biology, however, have
made it practical to score hundreds of genetic markers in
humans: each a variation in DNA sequence conveniently
observed as a restriction fragment length polymorphism
(RFLP). Botstein e? al. (6) suggested that RFLPs could be
used for the systematic study of human heredity and pro-
posed the construction of a true linkage map of the entire
human genome. Lander and Botstein (7, 8) have shown that
such an RFLP linkage map would allow more powerful
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analytical strategies for the study of human diseases and
traits.

Genetic maps are most accurately constructed by using
multipoint crosses. In humans, the case for multilocus
analysis is even stronger: gathering enough information to
map, for example, a disease-causing locus may require
pooling data from many families, each informative for a
different set of marker loci. Studying a dozen or more loci
simultaneously may thus often be desirable.

Such multilocus analysis, however, faces severe compu-
tational obstacles: (i) With m loci under study, there are ¥2m!
potential gene orders. (ii) For even a single gene order, the
traditional approach to constructing human linkage maps
requires computing time that scales exponentially with the
number of loci studied. Many hours of computer time may be
required to analyze four or five loci in a single order, despite
excellent computer programs (9, 10). For a larger number of
loci, ‘‘simultaneous analysis with current algorithms is pro-
hibitively time-consuming, even on a supercomputer’’ (12).

This paper addresses the second problem: given a gene
order, we explore ways to make multilocus linkage analysis
and computation of likelihoods practical, even for dozens of
loci. The main ideas are (i) a different search principle and (ii)
an algorithm for each step of the search that scales linearly
rather than exponentially with the number of loci studied.
Provided that the pedigrees under study are not too large, the
simultaneous study of any number of loci becomes feasible.

When gene order is not known, the methods can be used
to compare the likelihood of alternative gene orders.

Statement of Problem

Let M, . . . , M,, be m genetic loci, listed in the correct (or
assumed) chromosomal order. Given information about the
phenotypes of members of several pedigrees, we wish to
construct the best genetic map. Specifically, let 6; denote the
recombination fraction between adjacent loci M; and M;.;.
We want to find the value of 8 = (61, ..., 6,-1) that
maximizes the chance of the data having arisen. For simplic-
ity, we shall ignore crossover interference; i.e., assume
complete independence of recombination between all chro-
mosomal intervals. Although a useful starting point, this
assumption requires future scrutiny, since interference cer-
tainly exists in well-studied organisms such as Drosophila
melanogaster. Also, we shall suppose here that phenotypes
due to different loci are not epistatic.

Finding 6 requires searching a multidimensional space. An
iterative procedure must be specified to replace a previous
guess 6°9 by a revised guess 6%, at which the likelihood is
(one hopes) higher.

Traditional Approach. The traditional approach (9, 10, 13)
is to approximate the derivative of the likelihood function
L(6) at 6°¥ by computing the likelihood at 6°¢, and at m — 1
further points each displaced slightly in a different coordinate

Abbreviation: RFLP, restriction fragment length polymorphism.
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direction. A so-called ‘‘quasi-Newton’’ method (13-15) is
then used to choose 6™¥. ,

The method has three drawbacks: (i) On each iteration,
likelihoods must be computed at m different points. Each
likelihood calculation is very time-consuming when many
loci are involved. Indeed, Newton’s method itself is not used
for this very reason: it involves second derivatives, which
require computing likelihoods at m? points. (i) 6™ may
occasionally have lower likelihood. (iii) If the initial guess is
far from the maximum, initial convergence may be very slow
(14), especially in high-dimensional spaces. We therefore
discuss an alternative search technique.

Search Via the EM Algorithm. Human genetic map-making
can be viewed as a problem of missing data. In experimental
organisms, geneticists arrange to observe complete data: the
number of recombinant and nonrecombinant meioses that
occurred in each of the intervals (M; M;.;). Given these
complete data, the maximum likelihood 6; is determined
simply by counting recombinants: ; is the ratio of the number
of recombinants to total meioses.

Human geneticists must estimate the parameters 6; by
using only incomplete data—data that do not uniquely
determine the number of recombinant and nonrecombinant
meioses. The EM algorithm (16, 17) offers a powerful general
approach to obtaining maximum likelihood estimates from
incomplete data. Applied to linkage analysis, it prescribes the
following:

(/) Make an initial guess, 69 = (6, . . ., 6,—1).

(if) Expectation step. Using 6°Y as if it were the true
recombination fraction, compute the expected value for the
complete data—i.e., the expected number of recombinant
and nonrecombinant meioses in each interval.

(iii) Maximization step. Using the expected value of the
complete data as if it were the true value, compute the
maximum likelihood estimate 6"*% for the recombination
fractions.

(iv) Iterate the E and M steps until the likelihood converges
to a maximum.

The EM algorithm is not truly an algorithm, since it
specifies no procedure for performing the E and M steps. For
each application, appropriate algorithms must be fashioned.
For genetic map-making, the M step is trivial: (6"%); is just
the ratio of the expected number of meioses recombinant for
the ith interval (recombinant meioses for short) to the total
number of meioses.

The difficulty is the E step, which we call the ‘‘genetic
reconstruction problem’’: given the recombination fractions
6, compute the expected number of recombinant meioses for
each meiosis. Several approaches to the genetic reconstruc-
tion problem are discussed below. While the traditional
search method requires m likelihood calculations per itera-
tion, we shall show that genetic reconstruction can be
accomplished with the equivalent of only two traditional
likelihood calculations. (For two- and three-generation ped-
igrees, we shall also describe even faster methods.)

Advantages of EM Search. (i) Likelihood increases mono-
tonically. Since the probability distribution for the complete
data comes from an exponential-family form, the following
result holds (16, 17).

THEOREM. Successive estimates of 0 generated by the EM
algorithm have increasing likelihoods and converge to a
point 6* at which the derivative of the likelihood is zero.

As for all general optimization procedures, there is no
guarantee that the limit point is the global maximum; several
initial guesses should be tried. In our experience, however,
most human linkage problems appear to have a single local
maximum, for a given gene order. The exceptions involve
either very small or unlikely data sets.

(ii) Convergence properties of EM are roughly opposite
those of Newton searches. Unlike Newton searches, EM
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searches tend to converge quickly to the vicinity of the
maximum, even when started at a distant point. Thus, EM is
often favored in multidimensional searches, an extreme
example being the reconstruction of a positron emission
tomography scan image involving maximizing >15,000 var-
iables (18). Our tests, described below, show that EM is
similarly effective at solving genetic linkage problems: 5-20
iterations typically suffice for problems involving dozens:of
loci.

In the vicinity of the maximum, each EM iteration covers
only a constant fraction of the remaining distance on each
iteration (i.e., linear convergence) (16, 17). Newton-type
methods converge more quickly in the final stages and thus
are preferable when many decimal places of accuracy are
required. In human genetics, such accuracy is unnecessary
and typically spurious. Nevertheless, one can easily accel-
erate the convergence of EM in the final stages by using the
fact that the EM method yields the exact derivatives of the
likelihood function for no extra work. If °4 and 6°¥ are the
initial and revised estimates according to EM, then

9 log L(eold) _ n(a?ew —_ G?ld)

1
a6; 61 — 6) -

where n is the total number of meioses in the pedigrees. (Eq.
1 amounts to a special case of formula 2.13 in ref. 16; it also
follows directly from differentiating the expression for the
likelihood.) Thus, one can switch to a Newton rule in the
vicinity of the maximum, using EM to generate the required
derivatives. More subtle acceleration methods for EM are
also known and involve predicting the target of the linear
convergence (16). Our experiments (described below) sug-
gest that such methods can roughly halve the number of
iterations required for satisfactory convergence in practical
problems.

Second derivatives, and thus the information matrix, can
also be computed exactly via the EM approach (16).

(iii) Being intuitive, EM is easy to generalize. Sex-specific
estimates, 602 and ¢°male| of the recombination fractions can
be found with only a minor modification of the above: simply
‘“‘count expected recombinants’’ separately in male and
female meiosis to obtain sex-specific revised guesses. The
computation time per iteration is unchanged, even though
twice as many variables are being estimated.

Summary. The theoretical advantages of the EM search are
(i) less computation time per iteration; (ii) increased likeli-
hood on each iteration; (iii) good initial convergence prop-
erties; (iv) exact expressions for derivatives of the likelihood;
and (v) ease of generalization.

Genetic Reconstruction

The practicality of the EM approach rests entirely on efficient
solutions to the genetic reconstruction problem: Given phe-
notype data for the loci My, . . . , M, in a pedigree and given
the recombination fractions ¢ = (6;, ..., 6,-;) between
consecutive loci, determine the expected number of recom-
binations that occurred in each interval (M;, M;;,).

The answer depends on the nature of the data. We discuss
three algorithms suited to different situations.

Reconstruction: A Special Case

Known Genotypes. Suppose that we can completely ob-
serve the genotype of each individual in a pedigree, including
which alleles are on the paternally and maternally derived
chromosomes. This is frequently possible for most meioses in
multigeneration families. For each meiosis, we can then tell
by inspection whether a recombination occurred between
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any two loci for which the parent is informative (i.e.,
heterozygous). The data are incomplete only in that some loci
are uninformative.

For example, suppose that M; and M; are informative, but
locus M, is not. If M, and M, recombined in a meiosis, we
cannot tell whether a recombination occurred in the interval
(M,, M,) or in (M;, M5). Nevertheless, it is easy to determine
the expected number of recombinations in each interval
(here, just the probability of a recombination). For (M;, M,),
itis p; = 61(1 — 6,))/[6:(1 — 6) + (1 — 61)6,]. For (M2, M3)
it is p = 1 — p;. On the other hand, if M; and M; did not
recombine, then the chance that a recombination occurred in
either of the basic intervalsis p; = p, = 6,6,/[6,6, + (1 — 6,)(1
- &)

Similarly, a recombination or nonrecombination observed
in a larger interval can be apportioned into expected recom-
binations and nonrecombinations in each of the subintervals.
Genetic reconstruction consists of performing this process
for each meiosis.

Computational Complexity. For the sake of efficiency,
observations concerning the same interval from different
meioses should first be aggregated. Recombinations and
nonrecombinations in each interval starting at M; should next
be apportioned between (M;, M,) and the remaining
subinterval. Then intervals starting at M, should be appor-
tioned and so on. Structured in this way, the computing time
is proportional to m?. (If observations were not aggregated,
the running time would be proportional to mk, where k is the
number of individuals under study. Typically, k = m.)

- We now turn to the general case.

Reconstruction: Via Elston-Stewart Algorithm

When only a few loci are considered, genetic reconstruction
can be efficiently performed via a slight modification of the
Elston-Stewart algorithm (4, 19). In brief, the Elston-Stew-
art algorithm proceeds recursively up the family tree com-
puting probabilities for each possible genotype of each child,
conditional on the genotypes of his parents, the phenotype of
the child, and the phenotypes for the child’s descendants.

Genetic reconstruction may be performed as follows: (i)
Having performed the Elston-Stewart algorithm, descend
the pedigree computing the probability distribution over the
possible genotypes for each triple consisting of a mother,
father, and child, via Bayes’ theorem. (ii) For each triple (x,

z) of genotypes, count the expected number of triples
consisting of a mother, father, and child having genotypes (x,
¥, 2), respectively. (iii) Each triple (x, y, z) corresponds to one
of the 222 possible patterns of recombination for the (m —
1) intervals in male and female meiosis; add up the expected
number of occurrences of each pattern. (iv) For each interval,
add up expected occurrences of crossover patterns with a
recombination in the interval.

Computational Complexity. For m loci havmg a alleles each
in a pedigree with n nonoriginal individuals and no inbreed-
ing, the Elston-Stewart algorithm requires on the order of
a%"n multiplications and a®n additions (see ref. 19). The four
steps of genetic reconstruction then require on the order of (i)
a%™n multiplications and a%n additions; (ii) a®"n additions;
(iii) a®™ additions; and (iv) m22™~! additions, respectively.
Genetic reconstruction thus essentially doubles the asymp-
totic computation time for the Elston-Stewart algorithm, as
claimed above.

Since the computation time scales with a®", the Elston—
Stewart algorithm becomes impractical for more than four or
five loci. This provoked us to develop an alternative ap-
proach.
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Reconstruction: Via Hidden Markov Chains

Whereas the Elston-Stewart method is appropriate for ped-
igrees of arbitrary size but only few loci, the following
approach will handle arbitrarily many loci but only pedigrees
of limited size.

The Inheritance Vector. Consider a pedigree containing k
nonoriginals—that is, individuals with at least one parent iil
the pedigree. For a locus M,, define the inheritance vector v;
to be a binary vector of length 2k, with coordinates corre-
sponding to the 2k gametes that gave rise to the nononglnals
A coordinate is 0 if the gamete carried DNA from the parent’s
paternally derived chromosome; otherwise, it is 1. The a
priori chance that any given coordinate differs between v; and
Vi1 is the recombination fraction 6;. In other words, the
inheritance vectors vy, . . . , vy arise from an inhomogeneots
Markov chain with known transition matrices: the transition
1(6;) between M; and M, is the Kronecker product of the 2
X 2 transition matrices corresponding to transitions in each
of the 2k coordinates.

Human geneticists observe only phenotype data at each locus
M;, from which the inheritance vector v; cannot be uniquely
inferred. (If the inheritance vector could be uniquely inferred,
genetic reconstruction would be trivial: the number of recom-
binants in the ith interval would simply be the number of
coordinates at which v; and v, differ.) However, it is easy to
compute the probability that the phenotype data at M; would
have been observed, given each of the possible values for v;. Let
g; denote a row vector of these probabilities, with coordinates
indexed by the possible values for v;. Applying Bayes’ theorem
(with all inheritance vectors equally probable a priori), one can
then compute the probability distribution p; over the possible
values for v;, conditional on the phenotype data for M;. As for
g, view p; as a row vector indexed by possible values for v;.
Although in the worst case g; and p; could have 2% nonzero
coordinates, typically the support is over a much smaller set—
since the phenotype data automatically exclude many possibil-
ities. (For efficiency, a locus that is completely uniformative in
a family, and thus for which no possibilities may be excluded,
should be skipped over. Expected recombinations in the result-
ing larger interval may then be apportioned using the approach
in the first reconstruction algorithm.) Thus, it may be practical
to enumerate g; and p; even if k is fairly large (k < 20).

To reconstruct the expected number of meioses recombi-
nant for a given interval, we proceed as follows:

@) Recursively compute the left-conditioned probability
distribution p ! for v; conditional on all dataforloci M, . . .,
M Given p}, g;+1, and T(6;), apply Bayes’ theorem to obtain

p1+1

phy = [P} T(6)] ° [gi+1]
e - gl

where ° denotes componentwise product of vectors, and -
represents dot product.

(ii) Compute the right-conditioned probabilities analogous-
ly.

(iii) Define a matrix T*(6;) as follows. Let ¢, be the entry
of the transition matrix 7(6;) corresponding to the transition
from inheritance vector v to w and let d(v, w) be the number
of coordinates at which v and w differ. Define t*,,, = d(v, w)
tww and T%(6;) = (t*,w). By Bayes’ theorem, the expected
number of recombinations between M; and M, is

(2]

[P:-LT(Oi)] . [Pﬁ 1

This completes genetic reconstruction.
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(iv) Note that the denominator in Eq. 2, L;+; = [pFT(6)] -
[pi+1], is simply the conditional probability for the data at
M;;,, conditioned on the data for My, . .., M;. Thus, the
overall likelihood is just L(6;, . .., 6,-1) = LoLy ... L,,.
Thus, the algorithm accomplishes both genetic reconstruc-
tion and likelihood calculation.

Computational Complexity. The initial probability distribu-
tion p; may be computed using the basic approach of the
Elston-Stewart algorithm for the single locus M;. Since the p;
do not depend on the 6;, they may be precomputed off-line
when the data are first entered.

Steps i-iii of the algorithm require a total of 3(m — 1) matrix
multiplications of matrices of size 2%. If the p; are sparse
distributions, with support on a set of cardinality s;, then (s;5,
+ 5383 + ... + Sy-15,) multiplications are needed. On the
other hand, suppose that the p; are dense. Since the matrices
7(6;) and T*(6;) are built from Kronecker products of 2 x 2
matrices, each matrix multiplication can be performed with
2k2%* multiplications using a simple ‘‘divide and conquer”’
approach (20), rather than 2* multiplications. The worst case
computation time is then O(6mk2%), although considerably
less time is needed the more that is known about the
inheritance vectors.

For a given pedigree, the computation time scales linearly
with the number of loci studied, rather than exponentially as
in the case of Elston-Stewart: studying 10 intervals takes
only 10 times as long as studying 1 interval. Of course, the
scaling constant limits the size of pedigrees that may be
studied: no more than 10-25 nonoriginals is probably prac-
tical, the exact limit depending on the informativeness of the
phenotypes. Nevertheless, a great many pedigrees of interest
fall into this class.

Practical Implementation

As part of an international collaboration coordinated by the
Centre d’Etude du Polymorphisme Humaine (CEPH), human
geneticists are currently scoring hundreds of RFLPs in 40
three-generation families consisting of four grandparents,
two parents, and many children. To explore the practicality
of the approaches described above, we wrote preliminary
computer programs implementing them for CEPH-type ped-
igrees. The programs were used to study segregation data for
some 60 RFLP loci on human chromosome 7 in =25 CEPH
families, gathered by Donis-Keller and colleagues at Collab-
orative Research. For any given probe, about one-third of
meioses were informative, of which about one-half were
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phase-known. The results of the genetic mapping will be
reported elsewhere (David Barker, P.G., Robert Knowlton,
James Schumm, Arnold Oliphant, E.L., Gina Akots, Valerie
Brown, Thomas Gravius, Cynthia Helms, Christopher
Nelson, Carol Parker, Kenneth Rediker, and Helen Donis-
Keller, unpublished results).

() We first wrote a computer program, called MAP-
MAKER, to analyze an unbiased subset consisting of geno-
type- and phase-known data, using the first genetic recon-
struction algorithm described above. Fig. 1 shows a repre-
sentative example (from among >20,000 uses): studying 16
loci simultaneously, the program converged to the maximum
likelihood map in 9 sec, after 12 iterations. (Convergence was
declared when the log; likelihood increased by <0.01, after
having shown clear linear approach. We frequently per-
formed a further 50 iterations to confirm that convergence
was complete.) ,

The number of iterations required for convergence varied
with the informativeness and, less importantly, with the
number of markers. In general, 20-30 iterations were suffi-
cient when about a dozen RFLPs were mapped simultaneous-
ly. Using a simple acceleration technique (p. 24 in ref. 16) to
project the target of the linear convergence, the number of
iterations was roughly halved to 10-15.

(i) To study the meioses with ambiguous phase, we wrote
an extension to MAPMAKER implementing an EM search
using the hidden Markov-chain approach. The program
typically required 3-5 min to converge (running on an
HP9000 computer) when 16 loci were studied. Slightly fewer
iterations were typically required than in the phase-known
case, presumably because more data were being included
(16). By contrast, the traditional approach would have
required years of computer time.

Based on these results, an EM search using a hidden
Markov-chain approach for genetic reconstruction appears to
be the method of choice for simultaneous analysis of any
number of RFLP markers in the CEPH pedigrees. We are
now rewriting the MAPMAKER program for general distri-
bution to interested investigators. [We should note that other
nontraditional approaches are being pursued by other inves-
tigators (cf. ref. 11).]

We have not yet implemented this approach for arbitrary
genetic systems or general pedigrees. Although the theory
demonstrates the favorable asymptotic scaling properties,
the practical limitations upon pedigree size will only be
known when complete computer programs are written.

Iteration Recombination Fractions log(Likelihood)
S N N S N S IS IS I I I N N A
& 0 .05 .05 .05 .06 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 -351.45
2 .01 .05 .18 .09 .13 .10 .08 .09 .08 .08 .14 .09 .09 .08 .21 -306.68
4 .01 .04 22 08 .16 .11 .08 .10 .08 .08 .18 .08 .08 .06 .24 .304.25
6 .01 .03 .24 .07 .17 .11 .08 .11 .08 .08 .20 .08 .08 .06 .25 -303.66
8 .01 .03 .25 .06 .18 .11 .07 .11 .08 .08 .22 .08 .08 .05 .25 -303.43
10 .01 .03 .25 .06 .18 .11 .07 .11 .08 .07 .22 .07 .08 .05 .25 -303.34
3 12 01.03 .25 .05 49 11 07 11 .08 .07 .23 .07 .08 .05 .25 -303.28
o
T 1N Ll [ 11 1 |1 [ 1 1] I

FiG.1. Example of multipoint linkage analysis using EM algorithm, showing convergence to maximum-likelihood genetic map for 16 RFLPs
on human chromosome 7, studied in CEPH families (see text). The initial assumption of 5% recombination between consecutive RFLPs
corresponded to a logyo likelihood of —351.45. After 12 iterations, the recombination fractions converged to a map that was ~10* times more
likely to have produced the observed data. The analysis used the first genetic reconstruction algorithm discussed in the text, involving only
genotype-known data, and it required ~9 sec on an HP9000 minicomputer. Analysis of the full data set, using the hidden Markov-chain
reconstruction algorithm, required ~4 min and did not alter the recombination fractions significantly.
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Determining Gene Order

Gene order is typically not known. Combinatorial optimiza-
tion techniques, however, can be used together with the
methods described above to find the gene orders yielding
maximum-likelihood maps with the highest likelihoods. We
have found the following satisfactory: (i) éxhaustive search
for up to eight loci; (if) branch-and-bound search (21), with
likelihood as the criterion for bounding and with the most
informative loci tried first; and (iii) simulated annealing (22)
with log likelihood used as energy function and with a random
walk over gene orders generated by transpositions.

A number of excellent techniques using criteria other than
likelihood- have also been proposed, including crossover
minimization and seriation (23).

Discussion

The construction of multilocus linkage maps in humans is
formulated above as a ‘‘missing data’’ problem, amenable to
solution by the EM algorithm. To apply the method, one
requires an efficient solution to the genetic reconstruction
problem. Three algorithms are described above, each highly
efficient in certain situations: (i) a simple allocation scheme
applicable to data in which genotypes and phases are known;
(ii) a modification of the Elston-Stewart algorithm appropri-
ate for studying a few loci in pedigrees of any size; (iii) a
hidden Markov-chain algorithm appropriate for studying any
number of loci in pedigrees with fewer than =20 nonoriginals.

We should note that Ott (24, 25) explored an EM-type
algorithmi for linkage analysis over a decadé ago, but explic-
itly rejected it as impractical. Ott defined 6*¥ via Eq. 1,
rather than using separate E and M steps. Since an expression
for the derivative of the likelihood function is unavailable for
most problems, Ott eventually decided (26) that the method
was of very limited usefulness. [EM was suggested for
phase-known data, however, by Thompson (27)]. By high-
lighting the availability of genetic reconstruction algorithms,
we hope to revive interest in the potential uses of the EM
method in human linkage mapping, most of which Ott
foresaw in his important papers (24, 25). »

For CEPH pedigrees, any number of RFLPS may be
simultaneously mapped in minutes by using the hidden
Markov-chain approach. This solves the computational bot-
tleneck in constructing a complete RFLP linkage of the
human genome. The power and limitations of such methods
remain to be explored for more general pedigrees and genetic
systems.

Finally, even in experimental organisms such as maize,
RFLP maps are most efficiently made via F, intercrosses,
despite the fact that some phases remain ambigiious. Multi-
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locus analysis, using Markov reconstruction, prdvides an
efficient way to extract the full information from the data.
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