Genetic Map Functions

A genetic map function M givesarelationr = M(d)
connecting recombination fractions r and genetic map
distances d between pairs of loci along a chromo-
some arm. Recombination fractions and map dis-
tances are summary statistics concerning potentially
observable characteristics of the single chromosomes
(adlso known as chromatids) that are the products
of meiosis, and that go into gametes. The recom-
bination fraction between two loci is the proportion
of such chromosomes that are recombinant, that is,
that have genetic material of differing parenta ori-
gins, at the two loci (see Linkage Analysis, M odel
Based). The genetic map distance between two loci
is the average number of exchange points that occur
along such a chromosome between the loci, where an
exchange point, also known as a crossover point, is a
point where the parental origin of the genetic material
changes. In these definitions, proportions and aver-
ages are calculated in the hypothetical infinite popu-
lation of single chromosomes resulting from meiosis
in a given organism, occurring under standard condi-
tions. Variations between organisms within the same
species, or of the conditions of meiosis, may lead
to small, but observable, differences in these quan-
tities. It should be noted that some authors (e.g. [1]
and [9]) use the term map function for the function
M1 in the inverse relation d = M ~(r) expressing
d in terms of r. We follow Karlin [7] and others in
calling M a map function, mainly because the the-
oretical development is slightly simpler for M than
for ML,

Map functions have been widely used in genetics
because of two facts. The first is that genetic map
distances are additive by definition, whereas recom-
bination fractions are not. Thus, map distances are
preferred for mapping chromosomes. The second is
that recombination fractions are much easier to esti-
mate from data, although with human data indirect
techniques may need to be used, see[9]. This is
because recombination refers only to features of chro-
mosomes at the endpoints of intervals. By contrast,
to estimate a map distance information concerning
exchanges in the entire interval between two loci is
required and, until recently, such information was
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rarely, if ever, available. Modern molecular genetic
methods now exist permitting the identification of
points of exchange along chromosomes, and in the
near future it may become much easier to estimate
map distances directly (see [8]).

The traditional use of map functions has been to
take an estimated recombination fraction 7 between
two loci and a map function M deemed appro-
priate for the organism in question, and estimate
the map distance between the loci by the quantity
d = M~(#). Perhaps the simplest case is the map
function r = d, with inverse d = r. Thisis quite sat-
isfactory for small r and d, say, in the interval (O,
0.05), but the relative error increases as the magni-
tudes of 4 and r increase. If two loci can be linked
by a chain of intermediate loci, each having a recom-
bination fraction of no more than 0.05 (say) with
its successor, then a quite satisfactory estimate of
the map distance between the initial and final locus
can be obtained by adding the successive interlocus
recombination fractions. The notion of map function
is helpful in situations where such intermediate loci
are not available.

The recombination fraction and map length of an
interval will differ when there is a nonzero chance
of multiple exchange points occurring in the interval.
The chance of this occurring increases as the size
of the interval increases. If we denote the distribu-
tion of exchange points in a particular interval by
(po, p1, P2, P3, -..), SO that p; is the expected pro-
portion of single chromosomes that have k exchange
points in the interval, then the recombination frac-
tion is

r=pi+ps+--- @

(i.e. the probability of an odd number of exchange
points), while the map length is

d=p1+2p2+3p3+---. @

For example, if p, = e ¢d*/k!, then the map length
is easily seen to be d, while the recombination frac-
tion is

_ _d? _
r=e?+e d§+...: fa-e?). (3
This relation is known as Haldane's map function,
and it is widely used today, nearly 80 years after
Haldane [6] first described it. Although simple and
easy to use, especialy for multilocus calculations,
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the Poisson Process underlying this map function has
only rarely been found to fit recombination data. As
a result, a sizeable body of work in the late 1940s
and 1950s from R.A. Fisher and colleagues and stu-
dents, excellently summarized in [1], supposed that
the points of exchange along a chromosome follow
a renewal process with independent interpoint dis-
tances distributed as 1x2 or $xZ2, rather than the
%Xzz that gives rise to Haldane’'s map function. Their
model seemed to fit existing human, mouse, and
other data quite satisfactorily, but possesses no map
function.

The very notion of a map function embodies cer-
tain implicit biological assumptions about the process
of recombination. For example, all map functions in
the literature are bounded above by 1/2, thereby con-
straining recombination fractions to be <1/2. Thisis
widely believed to hold, but there have been instances
where it was felt to be untrue, see [4]. Less obvi-
ously, the use of amap function presumes that distinct
chromosomal intervals having the same map length
necessarily have the same recombination fraction, and
conversely. This form of stationarity or homogeneity
is not observed in the one case in which there is
enough data to test it [3]. A number of writers have
discussed probability models for recombination that
do not constrain recombination fractions to be <1/2,
and do not satisfy the stationarity properties leading
to amap function, see [1] and [5]. Map functions are
best viewed as an aspect of certain probability mod-
els for recombination. As such, they reflect modeling
assumptions, and cannot be expected to be consis-
tent with all the relevant biological knowledge. What
matters is whether they are effective for the purposes
to which they are put.

Map functions are also useful in contexts where
al the products of meiosis remain together, as is
the case with ordered or unordered tetrads or octads.
In such situations, the model needs to be modified
dlightly, for athough the concept of map distance
remains appropriate, the classification of chromo-
somes as recombinant or not between loci is replaced
by a classification of tetrads or octads depending on
the parental origins of genetic material at theloci (see,
for example, [2]). We will not give any details, here,
but simply observe that this development leads us to
consider probability models for recombination that
refer to the four-strand bundle of chromatids, rather
than to the single chromosome products of meio-
sis. In this approach, chiasmata (the chromosomal

structures at points of exchange) are postulated to
occur along the four-strand bundle according to some
point process, and a mechanism for determining the
strands involved in the chiasmata is also specified.
The distribution of change-points along the resulting
chromosomes is then a consequence of the interplay
between the chiasma location process and the strand
choice mechanism, and, in specifying the recom-
bination process in this manner, we are also able
to calculate the probabilities of interest concerning
tetrad and octad types. The simplest assumption con-
cerning strand choice is that the strands involved
in any given chiasma are chosen at random from
the four possible, independently of those chosen for
other chiasmata. This is known as the assumption
of no chromatid interference, interference being a
term used in genetics to denote some form of depen-
dence. In what follows we make this assumption,
athough (see[11]) map functions can be defined
without it.

Under the assumption of no chromatid inter-
ference, a simple relationship widely attributed to
K. Mather follows. It states that among meioses in
which one or more chiasmata occur in agiven interval
along the four-strand bundle, on average half of the
resulting chromosomes will be recombinant across
that interval. More formally, if r is the recombina-
tion fraction between two loci, and ¢q is the chance
of having no chiasma located in the interval in any
meiosis, then

r=31-co). )

When ¢o = c¢o(d) depends only on the map length
d of the interval, this relation is a map function.
Now every chiasma involves just two of the four
chromatids, and so the average number of chiasmata
between two loci on the four-strand bundle is twice
the average number of points of exchange between
the same two loci on a single chromosome resulting
from meiosis. Suppose that the number of chiasmata
occurring in an interval along the four-strand bun-
dle is Poisson distributed with mean 2d4. Then the
map length of that interval is just d, and the chance
of no chiasmata is e %¢. Substituting into the above
formula, we recover the Haldane map function (3)
once more. It should be pointed out, however, that
we can aso recover this map function using a dif-
ferent distribution for the number of chiasmata and a
different assumption concerning strand choice [13].
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Keeping to the no chromatid interference assump-
tion, we can derive many probabilistic models for
recombination by postulating that chiasmata occur
along the four-strand bundle according to a stationary
renewal process (SRP). If the interchiasma density is
f with respect to twice the map length density, then
simple arguments from renewal theory show that for
such models,

co(d) = 2 / / £(0) di dy. 5)
d y

It is shown in[14] that most of the map func-
tions in the literature can be realized by substituting
this expression with a suitable f into Mather's for-
mula (4). This includes certain empirical map func-
tions, such as the following suggested by Haldane
in 1919,

M~Y(r) =0.7r — 0.15log(1 — 2r). (6)

Map functions must satisfy certain constraints as
aresult of their definition, see [11] for details. Some
functions suggested in the literature as suitable map
functions do not satisfy these constraints [12], and
should probably not be used. More importantly, most
map functions are associated with stationary renewal
processes whose multilocus recombination probabil-
ities are extremely difficult to calculate, and for this
reason are not so useful. The class of SRPs with
chi-square distributed interchiasma distances in the
map distance metric has proved both tractable and
fairly general [14]. Another family of recombination
models in the literature are termed the count-location
processes [7]. These require the specification of adis-
tribution (g, : kK > 0) for the number (count) of chi-
asmata along the four-strand bundle, and a sequence
F, of functions giving the distribution of the loca-
tions of k chiasmata, given that k£ occur, k > 1. In
the special case that F is equivalent to specifying &
locations independently and identically according to
afixed distribution F, and no chromatid interference,
we easily find that

2d
cod) =g (1 - —) . )
m

where g(s) =Y, gis*, (0 <5 < 1) and m = g'(0).
Risch & Lange [10] found that this class of recombi-
nation models did not give a very good fit to certain
large data sets involving Drosophila melanogaster.

For many people, map functions are related to the
notion of interference. Crossover interference is said
to exist when the chance of one or more exchange
points in an interval depends on the occurrence of
exchange pointsin other, digoint intervals. When the
points of exchange form a Poisson process, thereis no
crossover interference. In general, such interference
is observed, which is another reason why Poisson
processes do not form suitable genera models for
recombination. (Note that a similar definition of inter-
ference can be formulated that refers to chiasmata
occurring along the four-strand bundle. The corre-
sponding notion is termed chiasmainterference.) The
traditional measure of interference is the coincidence
coefficient, this being, for adjacent intervals A and B,

r(A&B)

= Ar(B) ®

A,B
where r(A) and r(B) are the recombination fractions
of A and B, respectively, and r(A& B) denotes the
chance of simultaneous recombination across A and
B. It is easy to check that

r(A)+r(B)—r(AUB)
2 K

r(A&B) =

where A U B is the union of the adjacent intervals
A and B. Suppose now that A has map length d,
while B has small map length #, and that we take
a limit (assumed to exist) in the expression for C4 p
ash — 0. Assuming that M'(0) = 1, which is one of
the conditions that a map function must satisfy, we
obtain the differential equation

M'd)=1-2Cd)M ), 9

where C(d) is the limiting coincidence coefficient,
assumed to depend only on the map length of A.

This argument is due to Haldane [6], and many
familiar map functions are solutions of this equa-
tion when C(d) has the form (M (d))"~*. For exam-
ple, when n = 1, we get the Kosambi map function
widely used in human genetics:

M(d) = 1 tanh(2d). (10)

The foregoing discussion shows that there is a
connection between map functions and one aspect
of crossover interference. In fact, this connection
is quite superficial. A more useful (and outside of
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genetics more widely used) measure of interference
is the expression C4(d) = C4.p Where A and B are
infinitesimal intervals separated by a map distance
d. This measure cannot, in general, be expressed
in terms of the map function. In fact, there exist
distinct probability models for recombination hav-
ing the same map function, with one model having
C4(d) = constant, while the other has C4(d), a func-
tion increasing almost monotonically fromOatd = 0
to 1 for large d. In short, the two recombination mod-
els have the same map function, but very different
interference properties, using the term interference
in a general sense. Map functions do not adequately
account for interference; this must be done using a
probability model for recombination.

We close with some summary remarks. Map func-
tions can be used to convert recombination fractions
to map distances, correcting for multiple exchanges.
They also correct for the effect of interference, but
do not describe interference completely. They are
essentially organism-dependent, and at best provide
only rough approximations. It is not uncommon to
see multilocus analyses carried out using the Pois-
son (no chiasma or crossover interference) model
underlying Haldane's map function, at the end of
the analysis correcting the estimated recombination
fractions using Kosambi’s or some other map func-
tion. Thisis necessary because map functions (such as
Kosambi’s) do not, in general, determine joint recom-
bination probabilities for more than three loci. It is
reassuring that this somewhat illogical approach gives
estimated map distances that are not too different
from those that would be obtained using (for exam-
ple) a comparable stationary renewal process model
with chi-square distributed interpoint distances. Ide-
aly, multilocus mapping and linkage analyses should
be carried out using a properly specified probability
model for recombination suitable for the organism in
question. When this is done, map functions are not
needed.
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