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The choice of allele-sharing statistics can have a great impact on the power of
robust affected relative methods. Similarly, when allele-sharing statistics from
several pedigrees are combined, the weight applied to each pedigree’s statistic
can affect power. Here we describe the direct connection between the affected
relative methods and traditional parametric linkage analysis, and we use this
connection to give explicit formulae for the optimal sharing statistics and weights,
applicable to all pedigree types. One surprising consequence is that under any
single gene model, the value of the optimal allele-sharing statistic does not de-
pend on whether observed sharing is between more closely or more distantly
related affected relatives. This result also holds for any multigene model with
loci unlinked, additivity between loci, and all loci having small effect. For spe-
cific classes of two-allele models, we give the most powerful statistics and opti-
mal weights for arbitrary pedigrees. When the effect size is small, these also
extend to multigene models with additivity between loci. We propose a useful
new statistic, Srob dom, which performs well for dominant and additive models
with varying phenocopy rates and varying predisposing allele frequency. We find
that the statistic S–#alleles, performs well for recessive models with varying pheno-
copy rates and varying redisposing allele frequency. We also find that for models
with large deviation from null sharing, the correspondence between allele-shar-
ing statistics and the models for which they are optimal may also depend on
which method is used to test for linkage. Genet. Epidemiol. 16:225–249, 1999.
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INTRODUCTION

Genetic mapping of a trait by linkage analysis involves finding regions of the
genome with a tendency to be shared identical by descent (IBD) by close relatives
affected with the trait and not shared between affected and unaffected relatives. Full
parametric linkage analysis entails specification of a model for inheritance of the
trait, with the location of the gene then estimated by the method of maximum likeli-
hood. For a single-gene two-allele model, the full parametric model would include
the frequency, a, of the trait-causing allele, as well as penetrances f0, f1, f2, for
noncarriers, heterozygote carriers, and homozygote carriers, respectively. More com-
plicated models might include (1) a single gene model with h alleles with frequen-
cies a1, . . . , ah, respectively, and penetrance fij for an individual whose genotype
consists of the ith and jth alleles or (2) multigene versions of the above models, in
which loci are unlinked and effects are additive across loci. In cases when the pa-
rameters of the model are not known, they are sometimes impossible to estimate,
and the maximum likelihood analysis has been found to be very sensitive to model
misspecification [Clerget-Darpoux et al., 1986]. Allele-sharing methods have been
proposed as a way to avoid these difficulties. This class of methods includes the sib
pair method, originated by Penrose [1935] and developed by many others [e.g., Day
and Simons, 1976; Green and Woodrow, 1977; Fishman et al., 1978; Suarez, 1978;
Hodge, 1984; Lange, 1986; Fimmers et al., 1989], the affected pedigree member
method (APM) of Weeks and Lange [1988], which uses identity by state (IBS) infor-
mation, work on affected relative pairs by Risch [1990], and general affected relative
methods that use IBD information [Whittemore and Halpern, 1994; Kruglyak et al.,
1996; Whittemore, 1996; Kong and Cox, 1997]. These methods are clearly not model-
free, but they are believed to be more robust than full parametric likelihood analysis
in those cases when the model is not known.

We now describe the framework for these allele-sharing methods. For any ge-
nome location x and any pedigree with n members and l founders, l < n, following
Thompson [1974], we number the founders’ alleles 1 through 2 × l, and we define the
gene-identity state g at each location x in the genome by g(x) = (p1, m1, p2, m2, . . . , pn,
mn) where pi represents the founder allele inherited by individual i from his or her
father and mi that from his or her mother. We consider two gene-identity states to be
equivalent if one can be obtained from the other by simply permuting the allele
labels. The resulting equivalence classes of gene-identity states are called IBD con-
figurations and denoted by c. We consider an allele-sharing statistic (S(c,Φ) to be a
function of the allele configuration c and the phenotype information Φ in the pedi-
gree (more generally, S might depend on g rather than c).

Allele-sharing methods generally consider sharing among affecteds only, and
with the exception of a brief discussion of discordant sib pairs, we limit this study to
statistics S depending on affecteds only. Note that in principle, S may use informa-
tion on sharing with unaffecteds as well. For instance, full parametric linkage analy-
sis may be seen as the case where S is chosen to be the likelihood ratio [Kruglyak et
al., 1996], which of course depends on the genotype information on both affecteds
and unaffecteds. The three rationales for considering affecteds only are, first, that
this effectively eliminates one penetrance parameter from the model, leading to greater
robustness when the model is unknown. (When only affecteds are considered, the
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two-allele model can be parametrized by the frequency a of the predisposing allele
and the relative risks f2/f0 and f1/f0). Second, affecteds contribute most of the infor-
mation to the study, and elimination of unaffecteds from consideration does not usu-
ally cause a severe loss of power. Third, for many complex diseases or traits, some
individuals classified as unaffected may simply not yet have developed the disease
or trait. For instance, Alzheimer’s disease, many cancers, and many phenotypes re-
lated to heart disease tend to have a late age of onset. Thus, in some cases, the
designation of an individual as “unaffected” may be much more uncertain than the
designation of an individual as “affected.” Note that although S depends only on
affecteds, genotype information on unaffecteds may be used for inferring IBD infor-
mation on affecteds.

We concentrate on allele-sharing methods based on IBD rather than IBS shar-
ing, as the former are more powerful [Kruglyak et al., 1996; Sobel and Lange, 1996].
In practice, of course, full IBD information is not available, but instead, the condi-
tional distribution of the allele configuration c(x) at any given location x, conditional
on the marker data, may be computed. For instance, the software package
GENEHUNTER of Kruglyak et al. [1996] can compute, for small to moderate-size
pedigrees, the conditional distribution of what they call the inheritance vector, which
is equivalent to the allele configuration, at a location x, given the multipoint marker
information for all pedigree members. In that case, instead of considering S(c(x),Φ),
one could consider, e.g., its null expectation conditional on the multipoint marker
information, S

–
(x,Φ) = Sw0C S(w,Φ)PO[c(x) = w|data], where PO[c(x) = w|data] is cal-

culated under the null hypothesis of no gene for the trait linked to that location.
Under the null hypothesis of no gene for the trait linked to location x, the distri-

bution of an allele-sharing statistic S is in principle known. The hope is that S will
show significant deviation from its null distribution when there is a gene at that
location affecting the trait. Proposed tests for detecting this deviation are described
below. Not surprisingly, the power to detect linkage using any particular statistic S
can vary greatly depending on the underlying genetic model for the trait. For in-
stance, Figure 1a and b depicts the power to detect dominant alternatives with vari-
ous phenocopy rates and penetrances using 30 affected trios consisting of sib pairs
each with affected parent, while Figure 1e and f shows the power to detect recessive
alternatives under the same conditions. Four different allele-sharing statistics are com-
pared (definitions given in Definitions of Allele-Sharing Statistics). Note that those
that perform best in the dominant case perform worst in the recessive case and vice
versa, although the statistics perform similarly in the dominant and additive cases, as
shown by a comparison of Figure 1a–d. In this paper, we investigate the relationship
between allele-sharing statistics and two-allele models, with extension to special cases
of multiple unlinked genes.

PRIOR WORK ON CHOICE OF SHARING STATISTIC

For the special case of sib pairs, there are several relevant studies. Schaid and
Nick [1990, 1991] Knapp [1991] derived an expression for the optimal sib pairs
allele-sharing statistic in terms of the probabilities of sharing 0, 1, or 2 alleles under
an alternative model. Knapp et al. [1994] pointed out that for affected sib pairs,
using the first method for testing linkage described below in Methods for Testing
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Linkage, S equal to the number of shared alleles (equivalent to Spairs defined below)
is optimal for the recessive model with full penetrance and no phenocopies, f2 = 1, f1

= f0 = 0. However, they did not discuss the fact that it is optimal for many other
models as well, nor that it is no longer optimal for the recessive case if there are
phenocopies, as shown in Feingold and Siegmund [1997]. These results are verified
as special cases of our results below, and we give a more exhaustive list of situations
in which Spairs is optimal. Feingold and Siegmund [1997] include an investigation of
the power of sharing statistics for sib pairs with an emphasis on recessive and par-
tially recessive models. For this, they use a Gaussian approximation, which is equiva-
lent to assuming small effect size, and assume multiple unlinked genes acting
additively between, but not necessarily within, loci.

Kruglyak et al. [1996] performed simulations comparing the power of two sta-
tistics, Spairs and Sall, defined below, for a scheme where the particular pedigree was
randomly determined and allowed to vary across realizations, and the method used
to test linkage was the first method described below. Their results indicated that Sall

performed much better than Spairs in the dominant case and for the two complex
models they consider, and that the two statistics performed equally well in the reces-
sive case.

As to the choice of the weighting factors γi, Kruglyak et al. [1996] suggest
equal weights (but note that they are first dividing each pedigree’s statistic by its null
standard deviation). Sobel and Lange [1996] suggest summing the statistics they
consider, without normalizing by the standard deviation. In the case of Spairs, they
suggest using weight √2/[n(n – 1)], where n is the number of affecteds in the pedi-
gree, to downweight large pedigrees. In both studies, the authors imply that these
choices are ad hoc.

Teng and Seigmund [1997] consider both choices of sharing statistic and of
weights. For relative pairs, they restrict consideration to the case of additivity within
and between loci, with large-sample asymptotics, i.e., small effect size, assumed to
hold. They consider a few special cases of multiple affected relatives and make the
additional assumption of a two-allele model at each locus in those cases. A statistic
that they find to work well can be generalized to the statistic Severyone considered here.
We note that while this statistic may work well for the large-sample asymptotics
with the particular small pedigrees considered in Teng and Siegmund [1997], if one
instead uses smaller samples with larger pedigrees, Severyone is very sensitive to
genotyping errors and loses most of its power in the presence of phenocopies or with
segregation of multiple copies of the predisposing allele within a pedigree. While
Teng and Siegmund [1997] consider each special case of pedigree type separately,
we are instead able to describe general optimal statistics with explicit algorithms for
computing them in any pedigree.

METHODS FOR TESTING LINKAGE

1. Ztot [Kruglyak et al., 1996]. Given a sharing statistic S, a pedigree, and a
genome location x, consider the normalized version of S, Z(c(x),Φ) = (S(c(x,Φ)
– mo)/so, where µo is the expected value of S and σo the standard deviation of
S under the null hypothesis of no gene for the trait linked to that location. In
the case of incomplete IBD data on location x, let Z

–
(x,Φ) = S

–
(x,Φ) – mo)/so.
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(With complete IBD data on x, Z
–
(x,Φ) = Z(c(x),Φ).) Note that σo is the null

standard deviation of Z, which will tend to be larger than the null standard
deviation of Z

–
. Thus, inference based on Z

–
 can be overly conservative [Kong

and Cox, 1997]. Consider p pedigrees, with Z
–
 for the ith pedigree denoted

by Z
–

i. To combine the Z
–

i’s for different pedigrees into an overall Z
–tot, choose

appropriate weight γi for the ith pedigree, with Σp
i=1 γ 2

i = 1, and let Z
–tot = Σp

i=1

γ i Z
–

i. Kruglyak et al. [1996] propose using equal weights for all pedigrees, γi

= 1/√p for all i, and they suggest comparing Z
–tot to a standard normal distri-

bution or computing an exact P value for Z
–tot in order to test linkage. Both

methods are implemented in their GENEHUNTER package.
2. LR lin Whittemore [1996] showed that in the complete data case, the test

statistic Ztot = Σ p
i=1giZi is the efficient score statistic corresponding to the

likelihood
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Here LA denotes the likelihood under an alternative model involving a gene at
the given location contributing to the trait. The superscript lin, for “linear,” de-
notes the particular class of alternative models given by (*), LO denotes the like-
lihood under the null hypothesis that no predisposing gene is linked to the given
location, ci(x) is the allele-sharing configuration for the affecteds in the ith pedi-
gree, c(x) is the configuration for all the pedigrees together, and Φi and Φ are the
affection status information for the ith pedigree and all pedigrees combined, re-
spectively. This model is not biologically based, but is a convenient mathemati-
cal representation of the deviation from null sharing. The parameter δ measures
the magnitude of deviation of the alternative likelihood from the null likelihood
in the direction specified by the γiZi’s, and δ must be estimated. Among other
things, Ztot being the efficient score statistic corresponding to the given likeli-
hood implies that the test based on Ztot is asymptotically equivalent to the test
based on the maximized log-likelihood ratio for the given likelihood (let log(L^Rlin)
denote this maximized log-likelihood ratio). Furthermore, the framework of maxi-
mum likelihood estimation provides for computation of lod scores and creation
of confidence intervals for the true gene location.

3. LR exp Kong and Cox [1997] have suggested a different likelihood,
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(where EO denotes expected value under the null hypothesis), which also has
Ztot as efficient score statistic, and is another mathematically convenient rep-
resentation of the deviation from null sharing. The likelihood Lexp

A   where exp
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is for “exponential,” has an advantage over the likelihood Llin
A  in that for the

latter, δ is restricted to the range (–1/(γZ)max, –1/(γZ)min), where (γ Z)max and
(γ Z)min are the largest and smallest possible values, respectively, of γiZi, i =
1, . . . , p. Thus, for models with large deviation from null sharing, power
may be lost using log (LR^ lin) when the sharing statistic S used is not close to
the optimal and hence the parameter δ maximizes on the boundary. There are
no such restrictions on δ in  Lexp

A . We note that in the case of complete data,
the statistic log (LR^ exp) (the maximized log-likelihood ratio under likelihood
Lexp

A ) is just a monotone transformation of Ztot, so the two methods give iden-
tical tests for linkage if exact P values are used. This is not the case, how-
ever, for the linear model, nor for either model with incomplete data, nor if
approximate P values are used.

GUIDING PRINCIPLES FOR THE OPTIMAL CHOICE OF S AND THE gi’S

By drawing a connection between the test statistics described above and the
likelihood ratio for the affecteds under a parametric model, we can derive completely
general, exact formulae for the optimal S and γi’s. For the test based on log(LR

^ lin),
the S and γi’s given below are asymptotically most powerful against the alternative,
while for the tests based on log(LR^ exp) and Ztot, the S and γi’s given below are most
powerful for any sample size.

A consequence of the work of Whittemore [1996] is that for a test based on
log(LR^ lin), the asymptotically optimal S is S = LA(c(x),Φ)/LO(c(x),Φ) – 1, where
LA(c(x),Φ) is the likelihood under the true alternative sharing distribution, as op-
posed to the mathematically convenient alternative likelihoods Llin

A  and Lexp
A . S is

optimal in the sense that for a given pedigree, the choice of parameter δ =
√Σp

j=1σ2
0j in likelihood Llin

A  corresponds to the true alternative likelihood LA. In
that case, the likelihood ratio in the allele-sharing framework would equal the
true likelihood ratio for the affecteds in the full parametric framework, giving
greatest power to detect the alternative. Since the parameter δ is estimated, the equiva-
lence of the allele-sharing and parametric likelihoods, with S chosen as above, is
asymptotic. (Note that S = b(LA/LO – 1) + d would serve just as well, where b and d
are any constants.) To combine pedigrees in this situation, we find that the asymp-
totically optimal weights are γi = σoi / √Σp

j=1σ2
0j , where σoi is the standard deviation of

S = LA/LO – 1 in pedigree i under the null hypothesis. These are asymptotically opti-
mal weights in the sense that when S and the γi’s are so chosen, then the case δ =
√Σp

j=1σ2
0j  in likelihood Llin

A  corresponds to the true alternative likelihood LA. Thus,

the likelihood ratio in the allele-sharing framework, with multiple pedigrees com-
bined in this way, would equal the true likelihood ratio for the affecteds in the full
parametric framework.

For log(LR
^ exp) and for the efficient score statistic Ztot, the optimal choice of S is

instead S = log(LA/LO) (here again, b log(LA/LO) + d would serve just as well), while
the corresponding choices of γi’s are the same as above, except that the null standard
deviations are now for the new choice of S = log(LA/LO). In the case of complete
data, these are non-asymptotic results. Although the non-asymptotic optimality of
these S and γi’s is not surprising for Ztot, it is somewhat surprising that such a non-
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asymptotic result would hold in the case of log(LR
^ exp), since the parameter δ is esti-

mated. In fact, when S and the γi’s are so chosen, log(LR^ exp) is a monotone transfor-
mation of the true likelihood ratio for any sample size, even though the parameter δ
is estimated by maximizing the likelihood. In the case of incomplete data, the result
for log(LR^ exp) would be asymptotic, as above for the case of log(LR^ lin). Note that
when the optimal S is used and pedigrees are combined, the optimal weight γi = σoi /
√Σp

j=1σ2
0j is equivalent to combining pedigrees on the unnormalized S scale, rather

than on the normalized Z scale as was done in Kruglyak et al. [1996], i.e., Ztot should
be a normalized version of Σi Si rather than a normalized version of Σi Zi as in Kruglyak
et al. [1996].

Although the log(LR^ lin) has a different optimal choice of S from the other two
test statistics, these two optimal choices of S, LA/LO – 1 and log(LA/LO), are approxi-
mately equal for alternative models with small deviation from null sharing. How-
ever, for alternative models with large deviation from null sharing, these statistics
may be quite different.

To choose the γi’s when the S used is not the optimal S, we note that EA(Z
tot) is

maximized when γi is taken equal to EA(Zi )/√Σp
j=1EA(Zj). This coincides with the choice

of γi given above when the optimal S is used. For alternative models with small
deviation from null sharing, when the S used is not the optimal S, the same choice of
γi ∝ EA(Zi) also approximately maximizes EA(log(LR^ lin)) and EA(log(LR^ exp)).

The principles given above, which connect allele-sharing statistics with para-
metric likelihoods, can be applied to any specific disease model to determine the
optimal S. The resulting S will be applicable to every pedigree type, not just special
cases. Similarly, the principles can be applied in reverse to determine for which dis-
ease models a particular S is optimal. As described in Methods for Testing Linkage,
Whittemore [1996] and Kong and Cox [1997] have shown the equivalence of the
allele-sharing methods to likelihood-based methods using a sharing statistic and a
model misfit parameter. Combining this with our results on optimal statistics, we can
view allele sharing methods as equivalent to picking a particular parametric disease
gene model and then introducing a parameter δ to absorb model misfit. A method
will perform well when the model chosen is close to the true model, but may per-
form very poorly if it is far from the true model, as illustrated in Figure 1.

EXCHANGEABILITY OF RELATIVES IN OPTIMAL S

All of the sharing statistics discussed below treat relatives exchangeably. By
this we mean that if the genotypes of some affected individuals were permuted among
them, with the two alleles of each individual’s genotype treated as a unit, never
separated, then, assuming that a biologically possible IBD configuration resulted,
the values of the allele-sharing statistics would not be changed. For instance, con-
sider the case of an affected sib pair with an affected first cousin, with the possible
IBD configurations shown in Table I, where the allele labels are arbitrary. In con-
figuration c2, one sib shares an allele with the cousin, and in c3, the sibs share one
allele. Intuitively, one might think that since sharing of one allele between a sib and
cousin is more unusual than sharing of one allele between the sibs, the former should
receive more weight in an evaluation of linkage under many genetic models of inter-



Fig. 1. a: Sib pair plus parent: power of various sharing statistics S against a dominant alternative
with varying predisposing allele frequency and no phenocopies. b: Sib pair plus parent: power of
various sharing statistics S against a dominant alternative with varying phenocopy rate and predispos-
ing allele frequency .02. c: Sib pair plus parent: power of various sharing statistics S against an addi-
tive alternative with varying predisposing allele frequency and no phenocopies. d: Sib pair plus parent:
power of various sharing statistics S against an additive alternative with varying phenocopy rate and



predisposing allele frequency .02. e: Sib pair plus parent: power of various sharing statistics S against
a recessive alternative with varying predisposing allele frequency and no phenocopies. f:  Sib pair plus
parent: power of various sharing statistics S against a recessive alternative with varying phenocopy
rate and predisposing allele frequency .02. In a–f, sample size = 30, power is computed at a single point
assumed to have no recombination with the gene, significance level = 2 × 10–5, and exact P values are
computed using Ztot or equivalently log(LR

^ exp).
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Figure 1e and f. (continued).
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est, e.g., when the risk to relatives of a proband is high, and perhaps less weight
when this risk is low. However, all of the allele-sharing statistics S considered here
depend only on the collection of genotypes and not on which relative has which
genotype, i.e., not on whether the observed sharing is between close or distant rela-
tives (although calculation of the null mean and variance, µo and σ2

o, does use the
relationship information). One might think that it would be very important to take
into account the closeness of the relatives who share among the affecteds, and one
might see the failure to do this as a flaw in the proposed allele-sharing statistics S.
Surprisingly, we can show that under rather general conditions, relatives actually
should be treated in this exchangeable way. This result follows from the fact that the
optimal S is some function of the likelihood ratio, here either LA/LO – 1 or log(LALO)
(see Appendix A for proof).

Note that the exchangeability result does not contradict the results of Risch
[1990] and Feingold et al. [1993] that affected first-cousin pairs are more powerful
for detecting linkage than affected sib pairs (assuming a single-gene model with full
IBD information and at least a moderately large relative risk to offspring of affecteds).
Here, the configuration c2 contains more information than just sharing between first
cousins. It also contains an affected sib pair that shares no alleles at the given loca-
tion. Thus, it is weaker evidence for linkage than the observation of sharing between
affected first cousins.

Conditions under which the optimal S should treat relatives exchangeably in-
clude models in which a single gene affecting the trait has h alleles with frequencies
a1, ..., ah and penetrance fij for an individual with genotype (i,j), and also multigene
models where the genes are unlinked and multiallelic, with additivity between but
not necessarily within loci, and with small effect size. The result does not depend on
the values of h, the ai’s, the fijs, nor on the type of pedigree. For all of the models in
this class, PA(Φ|c(x)) = PA(Φ|c´(x)) where c (́x) is obtained from c(x) by any permu-
tation of the genotypes of the individuals, with the two alleles of each genotype
treated as a unit, never separated. The models under which the result would not hold
would be those under which PA(Φ|c(x)) ≠ PA (Φ|c´(x)). Multigene models outside the
class described above, and environmental effects on penetrance that could be ex-
pected to be more similar for close relatives than for more distant relatives, could
cause such dependence. In the case of an affected sib pair with affected first
cousin, these complications could cause the optimal sharing statistic to give more
weight either to c3 (sib-sib sharing) or to c2 (sib-cousin sharing), depending on
the specific model.

TABLE I. Example 1: Outbred Sib Pair and First Cousin

Configuration Null
(sib, sib, cousin) prob. Spairs – m0 Sall – m0 S–#alleles – m0 Severyone–m0 S–#geno – m0 Sfewest – m0

c1 1 2 3 4 5 6 .125 –1.5 –.41 –1.375 –.125 –.25 –.0625
c2 1 2 3 4 1 5 .125 –.5 –.16 –.375 –.125 –.25 –.0625
c3 1 2 1 3 4 5 .3125 –.5 –.16 –.375 –.125 –.25 –.0625
c4 1 2 1 3 2 4 .125 .5 .09 .625 –.125 –.25 –.0625
c5 1 2 1 2 3 4 .1875 .5 .09 .625 –.125 .75 –.0625
c6 1 2 1 3 1 4 .0625 1.5 .59 .625 .875 –.25 –.0625
c7 1 2 1 2 2 3 .0625 2.5 .84 1.625 .875 .75 .9375
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In a typical allele-sharing analysis in which genome locations are tested indi-
vidually, without attempting to look for interactions between loci, we argue that,
among other considerations, a gene is detectable to the extent that it shows some
similarity to a single gene model in at least some proportion of the families. Thus,
the implication of the above result is that, in those cases when the allele-sharing
method is likely to have power to detect a gene, treating relatives exchangeably is
the right approach, to a first approximation, even for complex traits. Note that this
result depends on an IBD analysis (incomplete data allowed) with linkage tested at
every point, as in, e.g., the GENEHUNTER package [Kruglyak et al., 1996].

DEFINITIONS OF ALLELE-SHARING STATISTICS

Before presenting results on optimal allele-sharing statistics, we introduce the
following statistics, which can be applied to individual pedigrees with arbitrary num-
bers of affecteds. Table I gives sample calculations for the first seven statistics on
the list for the case of an affected sib pair with affected first cousin. (For that pedi-
gree type, two of the statistics, Sg–prs and S–#geno are equivalent.)

1. Spairs [Weeks and Lange, 1988; Fimmers et al., 1989; Whittemore and Halpern,
1994; Kruglyak et al., 1996; Sobel and Lange, 1996; Teng and Siegmund,
1997], counts, for each pair of affected relatives, the number of alleles they
share, and then sums that over all pairs of affected relatives. For a pair of
relatives with respective IBD genotypes (i,j) and (k,l), the number of alleles
they share is calculated as δ(i,k) + d(i,l) + d(j,k) + d(j,l), where d(x,y) = 1 if
x = y, 0 otherwise.

2. Sall [Whittemore and Halpern, 1994; Kruglyak et al. 1996; Teng and
Siegmund, 1997]. Consider a vector of length m, where m is the number of
affecteds, whose ith component is one of the two alleles of the ith person at
the given location. There are 2m such possible vectors w. For each w, let h(w)
= Π#alleles gj, where gj is the number of times allele j occurs in w, i.e. h(w) is
the number of permutations that preverve w. Define Sall = 1/2m × Σw0W h(w).
The value assigned to a configuration by Sall increases with the number of
people sharing the same allele. Whittemore and Halpern [1994] proposed
this statistic to weight more heavily group sharing of a single allele over
pairwise sharing of different alleles by different affected pairs.

3. S-#alleles
 (negative of Statistic A in Sobel and Lange [1996]) equals –1 times

the number of distinct-by-descent alleles appearing among the affecteds.
Sobel and Lange [1996] suggest that this statistic would be useful for
recessive traits.

4. Severyone If all affecteds in the pedigree have a common ancestor in the pedi-
gree, let Severyone(c) = the number of alleles shared by all affecteds. If not all
affecteds have a common ancestor, but it is possible to choose two pedigree
members such that all affecteds are descendants of at least one of them, then
let Severyone(c) = the number of ways to choose two alleles from among those
in c so that all affecteds have at least one of them, and so on. In general, if it
is not possible to choose i pedigree members such that all affecteds are de-

j=1



Optimal Allele-Sharing Statistics 237

scendants of at least one of them, but it is possible to choose i + 1 such, then
let Severyone(c) = the number of ways to choose i + 1 alleles from among those
in c so that all affecteds have at least one of them. In certain special cases,
Teng and Siegmund [1997] have proposed statistics that are equivalent to
Severyone, but they have not proposed a general definition, such as the one
given here, that would be applicable to all types of pedigrees of affected
relatives.

5. S-#geno counts –1 for each distinct genotype appearing in the observed IBD
configuration of affecteds in a pedigree.

6. Sg-prs counts the number of pairs of affecteds in a pedigree who have the
same genotype.

7. Sfewest equals one if the observed IBD configuration of affecteds in a pedi-
gree contains the fewest possible distinct-by-descent alleles for that pedigree
type, and it equals zero otherwise.

8. S#al triples equals the number of ways to choose three alleles i, j, k from the set
of those appearing among the affecteds in a pedigree so that (i,j), (i,k), and
(j,k) each appear as genotypes of at least one affected.

9. S#aff HBD (for inbred pedigrees) is the number of affected individuals who are
homozygous by descent (HBD) at the given locus. Let S-#aff HBD = –S#aff HBD.

10. S-#al HBD (for inbred pedigrees) equals –1 times the number of distinct-by-
descent alleles that occur at least once in HBD form among the affecteds in
a pedigree.

11.Srob dom = Σi0A(7
c1(i)

 – 1), where A is the set of all alleles observed for the
particular locus among the affecteds in the pedigree, and c1(i) is equal to the
number of affecteds in the pedigree with at least one copy of allele i.

OPTIMAL S’S FOR ALL PEDIGREE TYPES

The principles given above for choice of S and γi, giving the direct connection
with the parametric likelihood, are completely general and could be applied to any
specific case. What is somewhat remarkable is that for many cases of interest, the
resulting S can be given in a very simple form that is applicable to all pedigree types.
Following are some examples. Proofs are given in Appendix B. We assume for con-
venience that the penetrances satisfy f0 ≤ f1 ≤ f2.

Rare Dominant With Phenocopies

If a dominant model is assumed with predisposing allele frequency α → 0 (i.e.,
each allele is introduced no more than once into a pedigree), and with phenocopy
rate f0 satisfying f1 > f0 > 0, then let r = f1/f0 be the relative risk of having the trait
with and without the predisposing allele. Then the optimal allele-sharing statistic for
any pedigree in this case is

S rc i

i A

= −
∈
∑ ( ),( )1 1

where A is the set of all alleles observed for the particular locus among the affecteds
in the pedigree, and c1(i) is equal to the number of affecteds in the pedigree with at
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least one copy of allele i. In practice, we find that the power to detect linkage is not
very sensitive to the choice of r. We somewhat arbitrarily choose r = 7, and call the
resulting statistic Srob dom for “robust dominant.” Figure 1a–d shows that Srob dom per-
forms well for a variety of additive and dominant models with varying predisposing
allele frequency and phenocopy rate.

Allele With Small Effect, Single or Multigene

If the phenocopy rate is close to the penetrance of the homozygote carrier in the
two-allele model, i.e., if f0 → f2, then for all outbred pedigrees, the optimal sharing
statistic is given by

α Spairs + (1 – α) Sg-prs,

where α = (am– + ma–)2/(m2a– + m– 2a), m = (f1 – f0)/(f2 – f0), a is allele frequency, m–  = 1
– m, a– = 1 – a, and 0 < a < 1. This still holds if there are assumed to be multiple
unlinked genes, all with small effect (i.e., f0 → f2 at each locus), with additivity
between loci, while the individual locus follows a two-allele model. This sharing
statistic is optimal for tests based on any of log(LR^ lin), log(LR^ exp), and Ztot. In the
dominant case, this becomes a–Spairs  + aSg-prs, in the recessive case aSpairs + a– Sg-prs,
and in the additive case, simply Spairs. If the number of pairs sharing a genotype
cannot vary among the different possible configurations of the outbred pedigree, e.g.,
for an affected first cousin pair, where the number of shared genotypes is always 0,
then when f0 → f2, the optimal statistic is Spairs. For inbred pedigrees, when f0 → f2,
the optimal statistic is S#aff HBD when m < 1/2, S–#aff HBD when m > 1/2, and Spairs when
m = 1/2 (additive).

Rare Gene With No Phenocopies

In the dominant case with f0 → 0 and a → 0, i.e., a rare dominant with no
phenocopies, the optimal sharing statistic for tests based on log(LR^ lin) is Severyone. In
outbred pedigrees in which it is possible for all affecteds to share an allele IBD, this
result holds also for any m > 0 (i.e., any non-recessive model). The corresponding
optimal statistic in the recessive case is Sfewest.

Table II gives optimal allele-sharing statistics S in a number of other special
cases. These results hold for arbitrary pedigrees. For outbred pedigrees in which it is
not possible for a pair of affecteds to share an IBD genotype, the statistics S–#geno

and Sg-prs will each be the same for all possible c, and thus, are not useful as
sharing statistics. As noted in the second column of sharing statistics in Table II,
Spairs – S#al triples and Spairs should be substituted for S–#geno and Sg-prs, respectively, in
such cases. With the exceptions of Severyone and Sfewest, the statistics given are opti-
mal for tests based on Ztot, log(LR

^ lin) or log(LR
^ exp). For models under which the de-

viation from null sharing is great, the optimal sharing statistics for tests based on Ztot

and log(LR^ exp) will be different from those for log(LR^ lin). Under such models, the
same allele-sharing statistic can give substantially different power when used with
log(LR^ lin) as opposed to Ztot or log(LR^ exp), as shown in Figure 2. The cases for which
Severyone and Sfewest are listed as optimal are models for which the deviation from null
sharing is great. In those cases Severyone and Sfewest are optimal for the test based on
log(LR^ lin), whereas log(Sfewest/mo(Sfewest)) and log(Severyone/mo(Severyone)) are optimal for
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tests based on Ztot or log(LR^ exp). Note that in these two cases, log(S/mo(S)) takes
on the value –∞ with positive probability under the null hypothesis, correspond-
ing to the fact that some allele-sharing configurations possible under the null
hypothesis are impossible when a → 0 and f0 → 0. The statistics Sfewest and Severyone

would obviously not be very robust to genotyping errors or other slight devia-
tions from the model.

When choosing the weight γi to assign to the normalized optimal sharing statis-
tic Zi from the ith pedigree using a model given above or in Table II, it is important
to make the distinction between pedigrees that have the same optimal S for that
model and those that do not. For instance, under model 2 in Table II, an inbred and
an outbred pedigree do not have the same optimal S, while under model 6 they do.
When the optimal statistic S is used and the same statistic is optimal for all pedigrees
to be combined, then except for Severyone and Sfewest, the optimal weight γi for the nor-
malized statistic Zi from the ith pedigree is γi = σoi(S). This is so because in these
cases, for the given S, both LA(ci)/LO(ci) – 1 and log(LA/LO) are proportional to S –
moi(S), with the constant of proportionality not depending on i. When Severyone or Sfewest

is optimal and is used, taking γi equal to σoi(S)/moi(S) is optimal for tests based on
log(LR^ lin), because LA(ci)/LO(ci) = S/moi(S) in these cases. (For tests based on log(LR^ exp)
and on Ztot in this case, sharing statistic log(S/mo(S)), where S = Severyone or Sfewest,
respectively, is optimal. Here, µoi(log(S/mo(S)) = ∞, so the statistic would not be nor-
malized, nor would it be weighted when combined with other pedigrees. As noted
before, this last statistic is entirely non-robust to deviations from the model.)

When the optimal statistic S is used for each pedigree and different pedigrees
have different optimal S’s, then care must be taken when combining the statistics
from these pedigrees. For instance, inbred and outbred pedigrees have different opti-
mal sharing statistics under models 2, 3, 4, 7, and 8 of Table II, and outbred pedi-
grees that can have variation in Sg-prs and S–#geno and those that cannot have different
optimal sharing statistics under models 2, 4, and 7. In model 2, for example, log(LA/
LO) and LA/LO – 1 are both equal to (S–#geno – mo(S–#geno)) (1 – a)2 + o(1 – a)2 for
outbred pedigrees for which S–#geno can take on different values. They are both equal

TABLE II. Optimal Sharing Statistics in Special Cases

Outbred pedigree Outbred pedigree Inbred
Model (S–#geno, Sg-prs can vary) (S–#geno, Sg-prs cannot vary) pedigree

1. Dominant, f0 ® 0, a ® 0 Severyone Severyone Severyone

2. Dominant, f0 ® 0, a ® 1 S–#geno Spairs – S#al triples S–#al HBD

3. Dominant, a ® 0, f0 ® f2, Spairs Spairs S–#aff HBD

single or multigene
4. Dominant, f0 ® f2, a ® 1, Sg-prs Spairs S–#aff HBD

single or multigene
5. Recessive, f0 ® 0, a ® 0 Sfewest Sfewest Sfewest

6. Recessive, f0 ® 0, a ® 1 S–#alleles S–#alleles S–#alleles

7. Recessive, f0 ® f2, a ® 0, Sg-prs Spairs S#aff HBD

single or multigene
8. Recessive, f0 ® f2, a ® 1, Spairs Spairs S#aff HBD

single or multigene
9. Additive, f0 ® f2, Spairs Spairs Spairs

single or multigene
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Fig. 2. a: Sib quartet: power of Sall against a recessive alternative using different testing methods. b: Sib
quartet: power of .85 × Sfewest + .15 × S–#alleles against a recessive alternative using different testing methods.
In both a and b, sample size = 20, phenocopy rate = 0, power is computed at a single point assumed to have
no recombination with the gene, significance level = 2 × 10–5, exact P values computed.
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to (Spairs – S#al triples – µo(Spairs – S#al triples)) (1 – a)3 + o(1 – a)3 for outbred pedigrees for
which S–#geno cannot vary, and they are both equal to (S–#al HBD – mo(S–#al HBD)) (1 – a) +
o(1 – a) for inbred pedigrees, where mo(S) is the expected value of S under the null
hypothesis for a particular pedigree (this information on the likelihood ratio is given
in Appendix B for all models discussed). Thus, in this case, outbred pedigrees have
negligible value relative to inbred pedigrees, and outbred pedigrees for which S–#geno

cannot vary have negligible value relative to those for which it can. This is true for
all models described here for which the optimal statistics are different for these two
pedigree types. This is also the result if, e.g., a collection of inbred and outbred
pedigrees is regarded as a single (inbred) pedigree and the optimal statistics are ap-
plied: the outbred part of the pedigree does not contribute to the sharing statistic
under models 2, 3, 4, 7, and 8.

Note that the optimal weight assigned to a pedigree type can vary greatly with
the model. Figure 3 gives the optimal weight for an affected sib quartet relative to an
affected sib pair, assuming that the optimal S is used, under dominant and recessive
models with varying allele frequency and relative risk f2/f0 = 10. In addition, for
some models in which the predisposing allele frequency is high, an affected sib pair
may actually receive greater weight than an affected sib trio or quartet, because the
latter cases are more likely to involve multiple copies of the predisposing allele seg-
regating in the family. (Of course, this depends on the assumption that the affection
status of any additional siblings is unknown, so that the overall size of the sibship
from which each affected sib pair, trio, or quartet is drawn is not a consideration.)

Fig. 3. Optimal weight of sib quartet relative to sib pair for different models, using the optimal shar-
ing statistic S. For both the dominant and recessive cases, the risk to a homozygote carrier relative to a
homozygote non-carrier is assumed to be 10. The results are for Ztot or, equivalently, log(LR

^ exp).
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Example 1: concordant and discordant sib pairs. For sib pairs, Severyone =
Spairs = S–#alleles = Sall and Sg-prs = S–#geno = Sfewest. The former assign value i to pairs who
share i alleles and the latter assign value 1 to pairs who share two alleles and 0 to
those who do not. Consider any single-gene two-allele model parametrized by m, r,
and a, where m = (f1 – f0)/(f2 – f0), m = 0 corresponding to recessiveness, m = 1
corresponding to dominance, and m = 1/2 corresponding to additivity, r = f2/f0 is the
relative risk of a homozygote carrier to a homozygote non-carrier, and a is allele
frequency. Then for the test statistic log(LR^ lin), the optimal sharing statistic S in the
case of affected sib pairs is given by

Soptimal = aSpairs + (1 – a)Sfewest,

where a is as given above under Allele With Small Effect. Note that it does not
depend on r. This statistic is also approximately optimal for tests based on log(LR^ exp)
and Ztot when the deviation from null sharing is small. This same statistic is optimal
in any outbred pedigree for models in which the relative risk r approaches 1. For
discordant sib pairs, the optimal statistic is just the negative of the optimal statistic
for concordant sib pairs.

There are several other common parametrizations of the allele-sharing distribu-
tion for sib pairs. To see the connections between those and the two-allele model
used here, see Appendix C.

Example 2: outbred sib trio. In this case, Sg-prs = S–#geno + Sfewest, Spairs = 2Severyone,
and S–#alleles = Severyone. For any two-allele model with 0 < a < 1, the optimal sharing
statistic for a test based on log(LR^ lin), approximately optimal for tests based on
log(LR

^ exp) and Ztot when deviation from null sharing is small, is given by

Sopt ∝ aa–(m– – m)(1 – 2mr–  – rm2)Sfewest+
(am– + a–m)[a(1 + r– (1 – 4m) – 2rm2) + m(mr + 2r– )]Severyone +

aa– (m– – m)(r– (m–  – m) – rm2)S–#geno,

where r = 1 – r–1, i.e., it is a linear combination of three statistics, giving a two-
parameter model.

Example 3: single inbred individual. In this case, the two possible configura-
tions are 1 1 and 1 2, and the possible sharing statistics are S#aff HBD and S–#aff HBD.
When 0 < a < 1 and r > 1, for any two-allele model, S#aff HBD is optimal whenever m <
.5. Then it is clear that S–#aff HBD must be optimal whenever m > .5, because if the trait
follows a two-allele model with m < .5, then the dual trait, defined as the lack of the
original trait, also follows a two-allele model with m > .5. Single inbred individuals
convey no information for linkage when the model is additive (m = .5).

Example 4: lethal embryonic. For a rare (a → 0) recessive that is always
lethal, the dual trait is a common (a → 1) dominant with no phenocopies. Thus,
model 2 in Table II applies to the surviving family members.

TO WHAT MODELS DO SPAIRS AND SALL  CORRESPOND?

For some small pedigrees such as sib pairs or sib trios, these two statistics, Spairs

and Sall, coincide. For both affected sib pairs and affected sib trios, the two-allele
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models under which this statistic is optimal for log(LR
^ lin) are (1) any additive model,

or (2) any nonrecessive model (m > 0) with allele frequency a → 0, or (3) any
nondominant model (m < 1) with a → 1. The two-allele models under which this
statistic is optimal for log(LR

^ exp) and for Ztot using sib pairs are (1) m < .5 and r =
m– 2/m2 (e.g., recessive model with no phenocopies) or (2) m > .5 and r = 2(am– + a–m)2

– m– 2]/[2(am– + a–m)2 – m2] (e.g., dominant model with r = 1 + 1/(2a–2), i.e., either low
relative risk or allele frequency close to one or (3) m = .5 and r → 1, i.e., additive
with low relative risk. Note that this class of models, for which Spairs = Sall is optimal
for sib pairs, using LR^ exp and Ztot, is just the class of models where the number of
alleles shared by the sib pair is binomial. These results agree with the previous work
of Knapp et al. [1994] who found that when testing with Ztot, the optimal statistic for
the single gene recessive model with no phenocopies is Spairs. The results also agree
with Feingold and Siegmund [1997] who found, using a Gaussian approximation
that is equivalent to assuming small effect size, that Spairs is no longer optimal for
detecting recessive alternatives in that case, although it works well for models that
are far from recessive.

We now turn to general pedigrees. For outbred pedigrees and two-allele mod-
els, we have seen that Spairs is the optimal statistic for use with LR^ lin, LR^ exp, or Ztot

when the relative risk approaches 1 and at least one of the following holds: (1) the
model is additive, (2) the predisposing allele frequency approaches 0 and the model
is nonrecessive (m ≠ 0), (3) the predisposing allele frequency approaches 1 and the
model is nondominant (m ≠ 1), or (4) it is not possible for anyone in the pedigree to
share an IBD genotype. Thus, in practice, one might expect it to work well for non-
recessive conditions in which the predisposing allele has small effect.

To discover if Sall is optimal for any two-allele models in general pedigrees, we
have performed adaptive searches of the two-allele-model parameter space for vari-
ous pedigrees. Sall does not appear to be exactly optimal for any two-allele model in
general pedigrees. When LR

^ lin is used as a test statistic, the two-allele model for
which the optimal sharing statistic (i.e., LR – 1) most closely matches Sall is always
an additive model with different predisposing allele frequencies and relative risks for
different pedigrees, but empirically with allele frequency a in the range of .03 to .15
and relative risk f2/f0 in the range of 5.7 to 8.1. However, when LR^ exp or Ztot is used as
a test statistic, the optimal sharing statistic (log(LR)) is in general not as close to Sall

as LR – 1 can be, and the closest fits vary widely with the pedigree types.

DISCUSSION

We have investigated the correspondence between allele-sharing statistics and
the two-allele models for which they are optimal, with extension to multigene mod-
els with unlinked loci, additivity between loci, and small gene effects. From an un-
derstanding of this connection, the robust affected relative methods of Kruglyak et
al. [1996], Whittemore [1996], and Kong and Cox [1997] can be seen as equivalent
to picking a particular parametric disease gene model (or class of models) and intro-
ducing a parameter δ to absorb model misfit. They are not fundamentally different
from parametric linkage methods except in the particular parametric form in which
the model misfit is specified. (In single-point parametric linkage methods, the re-
combination fraction parameter q was often, in effect, the model misfit parameter.)
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In practice, much of the robustness of the affected relative method is due to choices
such as using affecteds only or using sib pairs, which reduce the dimension of the
parameter space.

We find that for any single gene model, the optimal S treats relatives
exchangeably. This result also extends to multigene models with unlinked loci, addi-
tivity between loci, and small gene effects. Thus, even when robust affected relative
methods are applied to extended families, there is no need for the sharing statistic S
to take into account whether it is the close or the more distant relatives in a family
who exhibit sharing. We argue that in cases in which the robust affected relative
methods discussed here are likely to have power to detect a gene, the exchangeabil-
ity result should still provide a useful approximate rule of thumb, even if the true
model does not fall into the above classes.

We are able to find simple expressions for the optimal S, applicable to any
pedigree type, for a variety of two-allele and some multigene models. While previ-
ous theoretical work in this area depends on asymptotic scenarios and small effect
sizes [e.g., Kong and Cox, 1997; Teng and Siegmund, 1997], the theory given here
applies to realistic sample sizes with large effects as well. We propose a new statis-
tic, Srob dom, which is easy to compute and robust across a variety of models. Our
power calculations for the case of affected sib pair with affected parent (Fig. 1a–d)
give the following order of performance, in decreasing order of power, against a
variety of dominant and additive models: Srob dom, Sall, Spairs, S–#alleles, while for reces-
sive models (Fig. 1e and f), this order is reversed. We have done similar calculations
for a variety of outbred pedigree types, and have found first, that the orderings in
terms of power given above for the four statistics hold more or less across the board,
and second, that the differences in power among the statistics may be quite small or
quite large, depending on the particular pedigree (results not shown). In the case of a
large inbred pedigree, Srob dom was found to be powerful against a wide variety of
dominant, additive, and recessive alternative models, although Spairs performed slightly
better in the recessive case (Mark Abney, unpublished results). In the case of the
large inbred pedigree used, exact computation of Sall was impossible, so this statistic
was not considered.

These results suggest use of Srob dom in practice, especially for non-recessive mod-
els. In many cases, the power of Sall will be nearly equivalent to Srob dom, but Sall is
more difficult to calculate. In the recessive case, Srob dom and Sall may or may not
perform well, depending on the pedigree type. There is no one statistic that performs
well over all disease models in general, but Spairs is perhaps the compromise choice.
As seen in Figure 1, it maintains a similar level of performance over many disease
models, although that level may be very low for some pedigree types. Another ad-
vantage of Spairs is that its distribution is much less skewed than those of Srob dom and
Sall, so the normal approximation is much more accurate for calculating P values. In
outbred pedigrees, S–#alleles is also a good choice in the recessive case only.

Kruglyak et al. [1996] performed a simulation study comparing Spairs and Sall. For
their particular simulation scheme, with the pedigree randomly determined and allowed
to vary across realizations, they found that Sall performed much better than Spairs in the
dominant case and for the two complex models they consider, and that the two statistics
performed equally well in the recessive case. Our findings are not necessarily inconsis-
tent with theirs, but we would caution that the statistic Sall, and likewise Srob dom, has a
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very skewed distribution and thus great care must be taken not to overrate its power if
approximations are used. The calculations shown here result from consideration of every
possible outcome, with no simulation or approximation involved.

The power calculations shown here are single-locus calculations, rather than
taking into account testing on a whole region of the genome as in Feingold et al.
[1993], Feingold and Siegmund [1997], and Teng and Siegmund [1997]. This sim-
plification allows us to consider non-asymptotic as well as asymptotic models, with
a unified approach that is applicable to all pedigree types, without requiring separate
analysis of many special cases of relationship. Simulation studies have indicated that
the relative performance of the statistics changes little when one takes into account
testing across a region of the genome (Mark Abney, unpublished results).

For models with nonnegligible deviation from null sharing, the choice of Ztot or
log(L^Rexp) on the one hand or log(L^Rlin) on the other, as the basis for a test of linkage,
can also affect which statistics are optimal against which alternative models. Similarly,
we find that the optimal choice of weights γi can be heavily influenced by the model. We
find that when the optimal sharing statistic S is used, pedigrees are appropriately com-
bined by adding the values of S, rather than the normalized values Z as in Kruglyak et al.
[1996]. In other words, γi should be taken to be proportional to the null standard devia-
tion of Si in the ith pedigree. When a non-optimal S is used, the optimal weight γi  de-
pends on the model and is approximately proportional to EA(Zi).

In the special case of weights for relative pairs, Teng and Siegmund’s [1997]
approach is equivalent to using weights proportional to EA(Z). This coincides with
our suggestion above for the case of non-optimal S. Since the alternative model is
unknown, they suggest using a crude estimate of λO, the relative risk to an offspring
of an affected, to calculate the weights. They find that a choice of λ^ O = 4 works well
in a variety of scenarios. For pedigrees with more than two affecteds, Teng and
Siegmund [1997] consider selected examples and find ways to convert them, on a
case-by-case basis, to effective numbers of different kinds of relative pairs. Their
empirical results on optimal weightings in specific examples are consistent with our
recommendation that for the optimal S, pedigrees should be combined on the S scale,
before dividing by the null standard deviations.

Finally, for the statistic Spairs, we have described the two-allele models for which
it is optimal. Sall does not appear to be optimal for any two-allele model in general,
but the closest fits occurred among additive models.
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APPENDIX A: DERIVATION OF EXCHANGEABILITY RESULT

Let c denote the sharing configuration among the affecteds in the pedigree at a
particular location x in the genome; Φ the affection status, where the unaffecteds are
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coded as “unknown,” e.g., for an affected sib pair with an additional unaffected sib,
Φ would denote the event that the two sibs are affected; LO(·) the likelihood under
the null hypothesis that a gene at location x has no effect on the trait; LA(·) the likeli-
hood under the true alternative model, assumed to involve a single gene at location
x. Note that LA(c,Φ)/LO(c,Φ) = PA(c)PA(Φ|c)/[PO(c)PO(Φ|c)], and using the fact that
PA(c) =  PO(c) and PA(Φ) = PO(Φ) = PO(Φ|c), we get LA(c,Φ)/LO(c,Φ) = PA(Φ|c)/PA(Φ),
where PA(Φ) = ΣcPO(c)PA(Φ|c) = EO(PA(Φ|c)|Φ).

Consider two pedigrees that are identical in terms of structure and affected mem-
bers, but differ only in their IBD sharing. Further, assume that the configuration of
IBD sharing among affecteds in one pedigree can be obtained from the configuration
of IBD sharing among affecteds in the other pedigree by permutation of individuals’
IBD genotypes, where the two alleles of an individual’s genotype are treated as a
unit, never separated. Let c1 be the IBD configuration in pedigree 1 and c2 be the
IBD configuration in pedigree 2. Then in each case, for the optimal S, we have S(ci)
= f(LA(ci,Φ)/LO(ci,Φ)) = f(PA(Φ|c)/PA(Φ)), where f(x) = x – 1 or log(x). PA(Φ) is clearly
the same for both pedigrees. The assumption of conditional independence of pheno-
types given genotypes and the fact that the IBD genotypes in one pedigree can be
obtained from the other by permuting individuals imply that PA(F|c) is the same for
both pedigrees as well. Thus, the sharing score assigned to the two different c’s by
the most powerful sharing function S must be the same, i.e., affected relatives within
a pedigree should be treated as exchangeable.

The extension to multiple unlinked genes with additivity between loci and small
effect at each locus, i.e., f0 → f2 at each locus, follows from a Taylor expansion of the
likelihood ratio around r = 1 – f0/f2 for each locus. Details are available from the author.

APPENDIX B: DERIVATION OF OPTIMAL SHARING STATISTICS AGAINST
PARTICULAR ALTERNATIVES

Applying the connection between optimal allele-sharing statistics and paramet-
ric likelihoods laid out in Guiding Principles for the Optimal Choice of S and the
γi’s, it remains to calculate a general expression for the likelihood ratio under each
model. Let k denote the number of affected individuals in the pedigree; a the fre-
quency of the predisposing allele; fi the probability of being affected given i copies
of the predisposing allele, i = 0, 1, 2; #al(c) the number of distinct-by-descent alleles
occurring in configuration c. Using the fact that LA(c,Φ)/LO(c,Φ) = PA(Φ|c)/PA(Φ),
where PA(Φ) = ScPO(c)PA(Φ|c) = EO(PA(Φ|c)|Φ), we get the following cases by simple
Taylor expansion of the likelihood:

1. Rare dominant with phenocopies (i.e., a ↓ 0, 0 < f0 < f1 = f2 ≤ 1): Then,
letting S = ΣiÎA(r

c1(i) – 1), we get LA(c,Φ)/LO(c,Φ) = 1 + a[S – EO(S)] + o(a).
2. Allele with small effect (i.e., f0 ↑ f2 ≤ 1, 0 < a < 1), single or multigene with

loci unlinked and additivity between loci: If the pedigree is outbred, LA(c,Φ)/LO(c,Φ)
= 1 + aa–r2[(am–  + a–m)2(Spairs(c) – EO(Spairs)) + aa–(m–   – m)2(Sg-prs(c) – EO(Sg-prs))]  +
o(r2), where a– = 1 – a, m–  = 1 – m, r = 1 – f0/f2,  with Sg-prs(c) – EO(Sg-prs) = 0 if it is
not possible to have variation in the number of pairs of affecteds who share a geno-
type. If the pedigree is inbred and the model is not additive (m ≠ .5), then LA(c,Φ)/
LO(c,Φ) = 1 + raa–(m–  – m)S#aff HBD + o(r2). If the pedigree is inbred and the model is
additive, then LA(c,Φ)/LO(c,Φ) = 1 + ¼r2aa–[Spairs – EO (Spairs)] + o(r2).
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3. Rare dominant, no phenocopies (i.e., f0 = 0 < f1 = f2 ≤ 1, a ↓ 0): For 1 ≤
i ≤ #al(c), let bi(c) denote the number of ways to choose i distinct-by-descent
alleles from among those in c so that all of the affecteds have at least one of the
i. (Note that when i = #al(c), bi(c) = 1.) Let d(c) be the smallest i, 1 ≤ i ≤ #al(c),
such that bi(c) > 0. Let d = the smallest possible value of d(c) for the particular
type of affected relatives, e.g., if all affecteds have a common ancestor in the
pedigree, d = 1. If there is not a single common ancestor, but everyone is de-
scended from at least one of two ancestors in the pedigree, then d = 2, and so on.
Let Severyone(c) = bd(c). Then lima®0 LA(c,Φ)/LO(c,Φ) = Severyone(c)/EO(Severyone), where
EO(Severyone) = Σc´ PO(c´)Severyone(c´). The same result is obtained for rare nonrecessive
with no phenocopies in outbred pedigrees in which it is possible for everyone to
share an allele IBD.

4. Dominant, no phenocopies, predisposing allele frequency approaches one
(i.e., f0 = 0 < f1 = f2 ≤ 1, a ↑ 1): If the pedigree is outbred and it is possible to have
variation in the number of genotypes present, then LA(c, Φ)/LO(c, Φ) = 1 + [S–#geno(c)
–EO(S–#geno)](1 – a)2+ o(1 – a)2. If the pedigree is outbred and it is not possible to
have variation in the number of genotypes present, e.g., if it is not possible for any
pair of affecteds to have the same IBD genotype, the LA(c, Φ)/LO(c, Φ) = 1 + [Spairs(c)
– S#al triples – EO(Spairs) + EO(S#al triples)](1 – a)3 + o(1 – a)3. If the pedigree is inbred,
then LA(c, Φ)/LO (c, Φ) = 1 + [S–#al HBD(c) – EO(S–#al HBD)](1 – a) + o(1 – a).

5. Rare dominant with small effect (f0 ↑ f1 = f2 ≤ 1, a, ↓ 0), single or multigene
with loci unlinked and additivity between loci: Let r = 1 – f0/f2. If the pedigree is
outbred, LA(c, Φ)/LO(c, Φ) = 1 + ar2[Spairs(c) – EO(Spairs)] + o(a3) + o(a2r) + o(r3). If
the pedigree is inbred, LA(c, Φ)/LO(c, Φ) = 1 – ar[S#aff HBD(c) – EO(S#aff HBD)] +
o(a2) + o(r2).

6. Dominant with small effect; predisposing allele frequency approaches
one (fo ↑ f1 = f2 ≤ 1, a ↑ 1), single or multigene with loci unlinked and additivity
between loci: Let r = 1 – fo/f2. If the pedigree is outbred and it is possible to have
variation in the number of pairs of affecteds who share a genotype, then LA(c, Φ)/
LO(c, Φ) = 1 + (1 – a)2r2[Sg-prs(c) – EO(Sg-prs)] + o(1 – a)4 + o((1 – a)2r2) + o(r4). If
the pedigree is outbred and it is not possible to have variation in the number of
genotypes present, then LA(c, Φ)/LO(c, Φ) = 1 + (1 – a)3r2[Spairs(c) – EO(Spairs)] + o(1
– a)5 + o((1 – a)3r2) + o((1 – a)2r3) + o(r5). If the pedigree is inbred, then LA(c, Φ)/
LO(c, Φ) = 1 + [S–#aff HBD(c) – EO(S–#aff HBD)](1 – a)r + o(1 – a)2 + o(r2).

7. Rare recessive, no phenocopies (0 = f0 = f1 < f2 ≤ 1, a ↓ 0): Then lima→0

LA(c, Φ)/LO(c, Φ) = Sfewest/EO(Sfewest).
8. Recessive, no phenocopies, predisposing allele frequency approaches one

(0 = f0 = f1 < f2 ≤ 1, a ↑ 1): Then LA (c, Φ)/LO(c, Φ) = 1 + (1 – a)[S–#al(c) – EO(S–#al)]
+ o(1 – a)2.

9. Rare recessive with small effect (f0 = f1 ↑ f2 ≤ 1, a ↓ 0), single or multigene
with loci unlinked and additivity between loci: If the pedigree is outbred and it is
possible to have variation in the number of pairs of affecteds who share a genotype,
then LA(c, Φ)/LO(c, Φ) = 1 + a2r2[Sg-prs(c) – EO(Sg-prs)] + o(a4) + o(a2r2) + o(r4). If the
pedigree is outbred and it is not possible to have variation in the number of pairs of
affecteds who share a genotype, then LA(c, Φ)/LO(c, Φ) = 1 + a3r2[Spairs(c) – EO(Spairs)]
+ o(a5) + o(a3r2) + o(a2r3) + o(r5). If the pedigree is inbred, LA(c, Φ)/LO(c, Φ) = 1 +
ar [S#aff HBD(c) – EO(S#aff HBD)] + o(a2) + o(r2).
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10. Recessive with small effect; predisposing allele frequency approaches
one (f0 = f1 ↑ f2 ≤ 1, a ↑ 1), single or multigene with loci unlinked and additivity
between loci: If the pedigree is outbred, LA(c, Φ)/LO(c, Φ) = 1 + (1 – a)r2[Spairs(c) –
EO(Spairs)] + o(1 – a)3 + o((1 – a)2r) + o(r3). If the pedigree is inbred, LA(c, Φ)/LO(c,
Φ) = 1 + (1 – a)r[S#aff HBD(c) – EO(S#aff HBD)] + o(1 – a)2 + o(r2).

APPENDIX C: ALTERNATIVE PARAMETRIZATIONS OF SHARING
DISTRIBUTION FOR SIB PAIRS

Note that the sharing distribution for affected sib pairs involves only two inde-
pendently varying quantities, P(share 2|both sibs affected) and P(share 1|both sibs
affected), with P(share 0|both sibs affected) = 1 – P(share 2|both sibs affected) –
P(share 1|both sibs affected). This may be parametrized by 0 ≤ a ≤ 1 and 0 ≤ δ ≤ α,
where P(share 2|both sibs affected) = (1 – a)/4, P(share 1|both sibs affected) = (1 –
δ)/2, and P(share 0|both sibs affected) = (1 + a + 2δ)/4, e.g., as in Feingold and
Siegmund [1997]. Alternatively, it may be parametrized by λS, the relative risk to
siblings of affecteds, and λO, the relative risk to offspring of affecteds, where a = 1 –
1/λS and δ = 1 – λO/λS [Risch, 1990]. For a single-gene two-allele model, if we let n0

= [a2 + 2aa–(1 – rm–) + a–2r– ]2, n1 = a[a + a–(1 – rm–)]2 + a–[a(1 – rm–) + a–r– ]2, and n2 =
a+a–r– 2, then α = 1 – n0/(.25n0 + .5n1 + .25n2) and d = 1 – n1/(.25n0 + .5n1 + .25n2).
Alternatively, the two-allele model may be parametrized by K, the population preva-
lence of the trait, VA, the additive variance of the trait, and VD, the dominant variance
of the trait, with α = (VA/2 + VD/4)/(K2 + VA/2 + VD/4) and δ = (VD/4)/(K2 + VA/2 +
VD/4) [Suarez, 1978]. Feingold and Siegmund [1997] point out that the two-allele
assumption is not necessary for these last formulae to hold.
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