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Sequence alignments unambiguously distinguish between
protein pairs of similar and non-similar structure when
the pairwise sequence identity is high (>40% for long
alignments). The signal gets blurred in the twilight zone of
20–35% sequence identity. Here, more than a million
sequence alignments were analysed between protein pairs
of known structures to re-define a line distinguishing
between true and false positives for low levels of similarity.
Four results stood out. (i) The transition from the safe zone
of sequence alignment into the twilight zone is described by
an explosion of false negatives. More than 95% of all pairs
detected in the twilight zone had different structures. More
precisely, above a cut-off roughly corresponding to 30%
sequence identity, 90% of the pairs were homologous;
below 25% less than 10% were. (ii) Whether or not
sequence homology implied structural identity depended
crucially on the alignment length. For example, if 10
residues were similar in an alignment of length 16 (>60%),
structural similarity could not be inferred. (iii) The ‘more
similar than identical’ rule (discarding all pairs for which
percentage similarity was lower than percentage identity)
reduced false positives significantly. (iv) Using intermediate
sequences for finding links between more distant families
was almost as successful: pairs were predicted to be
homologous when the respective sequence families had
proteins in common. All findings are applicable to auto-
matic database searches.
Keywords: alignment quality analysis/evolutionary conservation/
genome analysis/protein sequence alignment/sequence space
hopping

Introduction
Protein sequence alignments in twilight zone
Protein sequences fold into unique three-dimensional (3D)
structures. However, proteins with similar sequences adopt
similar structures (Zuckerkandl and Pauling, 1965; Doolittle,
1981; Doolittle, 1986; Chothia and Lesk, 1986). Indeed, most
protein pairs with more than 30 out of 100 identical residues
were found to be structurally similar (Sander and Schneider,
1991). This high robustness of structures with respect to
residue exchanges explains partly the robustness of organisms
with respect to gene-replication errors, and it allows for
the variety in evolution (Zuckerkandl and Pauling, 1965;
Zuckerkandl, 1976; Doolittle, 1979, 1986). Structure align-
ments have uncovered homologous protein pairs with less than
10% pairwise sequence identity (Valenciaet al., 1991; Holmes
et al., 1993; Holm and Sander, 1996; Brenneret al., 1996;
Hubbardet al., 1997). Indeed, most similar protein structure
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pairs appear to have less than 12% pairwise sequence identity
(Rost, 1997). Furthermore, the average sequence identity
between all pairs of similar structures is supposedly 8–10%,
and the observed distribution (Gaussian peaking around 8%
identity) marks another region, the midnight zone (Rost, 1997).
The midnight zone is populated by protein structure pairs that
may have become similar by convergent or divergent evolution
(Doolittle, 1994; Rost, 1997). Threading algorithms ultimately
aim at revealing homologous pairs from the midnight zone
(Wodak and Rooman, 1993; Bryant and Altschul, 1995; Sippl,
1995; Rost and Sander, 1996; Sippl and Floeckner, 1996;
Fischeret al., 1996; Rost and O’Donoghue, 1997). Conven-
tional sequence alignment methods become problematic at
much higher values of sequence identity. Methods often fail
to correctly align protein pairs with 20–30% pairwise sequence
identity. Hence, Doolittle (1986) coined the term twilight zone
for sequence alignments in this region. Do the difficulties
of alignment methods in this zone reflect merely technical
difficulties (statistical significance of detection), or is the
twilight zone defined by a particular feature of evolution?

Length-dependent cut-off for significant sequence identity

Pairwise sequence identity (percentage of residues identical
between two proteins) is not sufficient to define the twilight
zone. Instead, analysing the relatively small number of structure
pairs available in 1990, Sander and Schneider (1991) defined
a length-dependent threshold for significant sequence identity.
The threshold curve defined (dubbed HSSP-curve) was roughly
proportional to the inverse square-root of the length for
alignments between 7 and 80 residues, and was clipped to
saturate at 25% sequence identity over more than 80 residues.
In 1990, no pair with more than 30 identical residues of 100
aligned had different structures (Sander and Schneider, 1991).
Was this still true for the five times larger PDB (Bernstein
et al., 1977) of 1997?

Hopping in sequence space

If we could plot the space of protein sequences, would we
observe the protein families as islands? Unfortunately, we
cannot tell. Nevertheless, useful information has been extracted
from sequence (Casariet al., 1995) and structure (Maiorov
and Crippen, 1995) space. In everyday database searches,
protein families are widened by exploiting the transitivity of
homology (Pearson, 1996): (i) a query sequence U is aligned
to a database, say SWISS-PROT (Bairoch and Apweiler, 1997);
(ii) all sequences aligned at levels of significant similarity are
used as new seeds Ui, and for each Ui SWISS-PROT is
searched again; (iii) this procedure is repeated until no new
sequences are found. Sequence space hopping may be used in
combination with knowledge from structures to widen families
(Holm and Sander, 1997), or to increase the information
contained in multiple sequence alignments input to prediction
methods (Rost, 1996, 1997). Recently, the transitivity of protein
families has been exploited successfully to automatically
increase the yield in database searches [Ruben Abagyan
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presented the ‘multi-link recognition’ method 1996 at the
CASP2 meeting (Abagyan and Batalov, 1997); Parket al.
(1997) presented the ‘intermediate sequence search’ method
and Neuwaldet al. (1997) implemented the same concept
(Neuwald,et al., 1997)]. Here, I confirm the original findings
based on a different data set, and analysed in detail how the
gain depended on the number of intermediate sequence, and
their similarity.

Here, I present results of aligning a set of 792 sequence-
unique (no pair in set has more than 25% sequence identity)
proteins of known structure against PDB. The following
questions were investigated. Is the number of protein pairs of
non-similar structures proportional to the distance from the
HSSP-curve (eqn 1), or do false positives increase more rapidly
in the twilight zone? Is the curve defined by Sander and
Schneider (1991) still valid? Would using sequence similarity
rather than identity improve accuracy (as speculated by Schne-
ider and Sander)? Finally, can the accuracy be improved for
pair alignments by expert rules? The results verify, partially,
earlier work based on a 1000-fold larger data set (Sander and
Schneider, 1991). The novel aspects were (i) a definition of a
threshold for similarity (eqn 2), and a refinement of the
threshold for identity; (ii) an introduction of various expert
rules. Aspects largely complementing other analyses were
(Abagyan and Batalov, 1997; Parket al., 1997; Brenneret al.,
1998): (i) a large-scale evaluation of exploiting intermediate
sequences (sequence-space-hopping); (ii) a detailed analysis
of true and false positives providing estimates for accuracy
and coverage of database searches; and (iii) a comparison with
BLAST, one of the most popular methods for rapid databases
searches (Altschulet al., 1990; Altschul and Gish, 1996).

Methods
Data set: 792 sequence-unique protein structures
Protein databases are biased towards particular protein families.
To reduce this bias, analyses are usually restricted to represent-
ative data sets (Hobohmet al., 1992). Here, I chose the
maximal set of sequence-unique proteins of known structure
available in early 1997 (Holm and Sander, 1996). ‘Sequence-
unique’ was defined as ‘no pair in the set falls above the
HSSP-curve (eqn 1; Sander and Schneider, 1991). As a rule-
of-thumb, no pair had more than 25% pairwise sequence
identity. Each of these proteins was aligned against the subset
of PDB contained in the early 1997 release of the FSSP
database of protein structure alignments (Holm and Sander,
1996). This subset amounted in total to about 5646 protein
chains. Obviously the second step (792 versus 5646) re-
introduced bias into the results. However, aligning the 792
sequence-unique pairs against themselves would not have
yielded any result for most of the twilight zone analysed here.
Thus, 792 versus 5646 was the best compromise in reducing
bias and monitoring the biased region. The resulting test set
was the largest possible set of proteins for which structural
information was available (and thus false and correct hits
could be automatically distinguished).

Generation of sequence alignments
Protein pairs were aligned by two different program types.
(i) Full dynamic programming as implemented in the Smith–
Waterman (Smith and Waterman, 1981) based method
MaxHom (Schneider, 1994) (McLachlan metric, with min-
imum 5 –0.5, maximum5 1.00, and gap open5 3, gap
elongation5 0.3); and (ii) quick database searches as imple-
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mented by the two versions of the BLAST series: BLASTP
(Altschul et al., 1990; Altschul and Gish, 1996), and PSI-
BLAST (Altschul et al., 1997). All 792 unique proteins
were aligned against all 5646 proteins from the PDB subset.
Alignments shorter than 10 residues were not considered, as
identical polypeptides of up 10 residues are known to occur
in different structure states (Kabsch and Sander, 1984; Cohen
et al., 1993). Technical limitations (CPU time) required the
restriction of the dynamic-programming analysis to the best
2000 hits for each of the 792 unique proteins. (Note: this
restriction applied only to the final displayed alignment. Of
course, all possible combinations were explored initially by
the alignment algorithm.) The resulting final data set comprised
about 1.7 million pairwise alignments. For the comparison
between the dynamic programming and the BLAST methods,
the data set had to be reduced to all pairs that were aligned
by all methods compared (the problem was that neither
BLASTP, nor PSI-BLAST could be forced to report absolutely
wrong, i.e. ALL pairwise alignments).

Definition of sequence identity and sequence similarity
(i) Pairwise sequence identity was defined by the percentage
of residues identical between two aligned sequences (e.g.
aspartic matching aspartic counts 1: D – D5 1; aspartic on
glutamic was a non-match: D – E5 0). (ii) Pairwise sequence
similarity was defined by the percentage of residues similar
between two sequences (e.g. D – Dø 1; and aspartic on
glutamic was now considered a match: D – E. 0). Similarity
scores depend on the particular metric used to capture physico-
chemical properties of amino acids (note: most amino acids
are not considered 100% similar to themselves by typical
metrices, as such metrices are based on log-odds, e.g. for the
McLachlan metric only F, W, Y and C yield 100% self-
similarity). Consequently, levels of similarity are not directly
comparable between different metrices. For comparability, I
used the McLachlan metric (Gribskovet al., 1987) also used
in the HSSP database (Schneideret al., 1997). In principle,
there are two ways to convert similarity into percentage values:
(i) by normalizing the similarity score by the maximal possible
score observed in a given metric (percentage residue similarity);
and (ii) by setting an arbitrary threshold of the similarity score
to distinguish similar–not similar and counting the percentage
of residues that are similar according to this threshold (percent-
age of similar residues). Again, I followed the practice of the
HSSP database compiling the percentage residue similarity
(normalized by maximal possible scores). When compiling
percentages, the number of identical residues was normalized
by the number of residues aligned, gaps were ignored.

Standard of truth for structural similarity
Similarity between two protein structures is not uniquely
defined. Different structure alignment methods yield different
scores (Alexandrovet al., 1992; Holmet al., 1993; Luoet al.,
1993; Orengo, 1994; Crippen and Maiorov, 1995; Gerstein
and Levitt, 1996; Holm and Sander, 1996; Orengo and Taylor,
1996; Zu-Kang and Sippl, 1996). Such differences can be
substantial, as illustrated by differences between the expert-
based database of structural alignments SCOP (Murzinet al.,
1995; Brenneret al., 1996; Hubbardet al., 1997), and the
automatically generated databases CATH (Orengoet al., 1993,
1997) and FSSP (Holm and Sander, 1996). In general, FSSP
tends to find more pairs of similar structure than do CATH
and SCOP. However, this is only a trend. For many examples,
SCOP finds structural similarity and FSSP does not. Here, I
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Fig. 1. Sketch of sequence-space-hopping. The triangle defines three search
proteins (A, B and C) having mutually less than 25% sequence identity. The
circles define the three families (all sequences inside the circle indicated by
arbitrary namesaaa_specieshave more than 25% sequence identity to the
respective search proteins A, B and C). Sequence-space-hopping implies
joining the circles representing the protein families (as shown for proteins A
and B in the striped circles) if they contain identical proteins that are
aligned in the same region (ab_cvb in the example given).

chose the FSSP database ‘a standard of truth’: any pair for
which FSSP listed a significant score [zDALI. 4 (Holm and
Sander, 1996)] of structural similarity was considered to be
structurally similar. In order to distinguish between true and
false positives this decision implied that all pairs not listed at
the given cut-off of the FSSP database were structurally not
similar. However, this brought up the problem of different
structure alignment methods. For example SCOP may consider
a pair structurally similar, and FSSP may not. Thus, additionally
all pairs were excluded from the analysis that were listed in
FSSP but with lower z-scores. Even that still left pairs of
proteins with clear levels of sequence identity (more than
40%) which were not found listed in FSSP. Thus, I had
to refine this procedure by semi-automatically checking the
structural similarity for about 2000 protein pairs all of which
had levels of above 30% pairwise sequence identity [note this
number was negligibly small, as only 1% of all pairs were
found above this value (Fig. 2B)!]. The particular way in which
the standard-of-truth was constructed implied that estimates for
true positives might be slightly optimistic, estimates for false
negatives slightly pessimistic.

Concept of true and false hits
When Chothia and Lesk (1986) first analysed the relation
between sequence and structure similarity, they monitored the
details of structural differences, and found that the differences
are inversely proportional to the level of sequence identity.
The binary notion of ‘similar structure’ (true or false) used in
this analysis reflected a different focus: the goal was to estimate
the accuracy in correctly detecting rather than in correctly
aligning homologues. Did this imply that correct detection and
correct alignment were not correlated (as often the case for
threading: Bryant and Altschul, 1995; Lemeret al., 1995;
Sippl, 1995; Fischeret al., 1996)? Not necessarily, but the
fact is that two homologues can be detected although part—or
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Fig. 2. Explosion of structurally dissimilar pairs in the twilight zone.
Numbers of true (pairs with similar structure) and of false positives (pairs
with no similar structure) plotted versus the distance to the HSSP-curve
(Sander and Schneider, 1991), i.e. the horizontal axes give the distance from
the threshold defined in eqn 1 (numbers refer to the parametern in eqn 1).
The levels of pairwise sequence identity corresponding to the distance were
shown on top. (A) Number of pairs observed at any distance (logarithmic
scale). (B) Cumulative number of pairs observed (logarithmic scale). For
example, at a threshold corresponding to about 32% sequence identity for
long alignments, the numbers of true and false positives were equal (arrow
in A); at about 29% even the cumulative numbers of true and false positives
were equal (arrow in B). Note: numbers of true negatives and false
negatives result from the cumulative sums left of the threshold; percentages
of true and false positives given in Figure 5.

even the entire—alignment is wrong. (However, this extremely
irritating point was not pursued further in this analysis.)
The following cases were distinguished: (i) true positives,
alignments between proteins of similar structure that fall above
a given threshold (defined by the sequence alignment method);
(ii) false positives, alignments between proteins of dissimilar
structure that fall above a given threshold of the sequence
alignment; (iii) true negatives, alignments between proteins of
dissimilar structure that fall below a given threshold; and
(iv) false negatives, alignments between proteins of similar
structure that fall below a given threshold. Note that ‘negatives’
and ‘positives’ represent two sides of the same coin: at
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Fig. 3. Pairwise sequence identity versus alignment length. The original
HSSP-curve (Sander and Schneider, 1991) (dotted circles, eqn 1) appeared
to fit the true positives (homologues,A) better than the false positives (B).
In contrast, the new curve proposed here (filled diamonds, eqn 2) was more
conservative in excluding false positives. Note that due to the huge number
of pairs the plots for true (A) and false (B) positives appeared almost
equally densely populated (Figure 2 revealed the problem of such a scatter
plot).

any threshold extracted from the sequence alignmentn, the
following equations hold (for cumulative numbers):

false negatives1 true positives5 all pairs of similar structure

true negatives1 false positives5 all pairs of
dissimilar structure.

Distance to HSSP threshold
The HSSP-curve was originally defined by (Sander and
Schneider, 1991):

pI(n) 5 n 1 290.15 ·L–0.562, for L , 80{ 25 , doeL ù 80 (1)

where L gave the number of residues aligned between two
proteins;pI the cut-off percentage of identical residues over
the L aligned residues; andn described the distance in
percentage points from the curve (n 5 0 corresponds to the
original HSSP-curve;n 5 5 to the official HSSP database
releases; curve plotted in Figure 3). Once Schneider and Sander
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(1991) had discovered the basic functional dependence between
sequence identity and alignment length, they merely had to
fix two free parameters: the factor and the exponent. Both
were chosen to fit the data observed in 1991, in particular to
reach values of 25% around alignment length of 80, and
values of 100% around alignment length of 10. The principle
functional dependence described by eqn 1 also follows
from statistics, as was recently shown in an elegant work
(Alexandrov and Soloveyev, 1998). Letpi (i 5 1,..., 20) be the
probability that amino acidi occurs in a protein, andmij the
score for randomly aligning two amino acidsi andj. The score
S of an entire alignment can then be approximated by:

S 5 ,m. · L

where,m. is the expectation value ofmij, andL the alignment
length. If the values ofmij are independent, Gaussian distributed
variables, it follows (after some elementary operations) that
the relation between the standard deviation of the values of
mij (σm ), and the resulting score distribution (σS) is:

σm 5 L–0.5 · σs

In their original article Alexandrov and Soloveyev work
out an appropriate re-scaling of the dynamic programming
alignment. However, this scheme cannot be applied after the
alignment has been completed (as the threshold functions used
in this work), rather it has to be implemented into the
alignment method.

New curve for length-dependent significance of pairwise
sequence identity
I attempted to solve the problems of the original HSSP-curve
(eqn 1; Results) by defining the following curve for the
separation of true and false positives (Figure 3, grey line with
dotted circles):

pI(n 5 n 1 480 ·L–0.32 · (11 e–L/1000) (2)

where L gave the number of residues aligned between two
proteins;pI the cut-off percentage of identical residues over
the L aligned residues; andn described the distance in
percentage points from the curve (n 5 0 plotted in Figure 3).
The constraints in visually selecting the final function were (i)
to maintain the functional form defined by eqn 1 (and suggested
by the statistics of Alexandrov and Soloveyev, 1998); (ii) to
hit the 100% mark at alignments that are too short to reveal
anything about structural similarity (5 11 residues); (iii) to
saturate at levels around 20% sequence identity (reached for
length5 300); and (iv) to roughly reflect the observed gradient.
Saturation for long alignments was realized by the functional
form of the exponent (note: the term1 e–L/a resulted in an
exponential decay). This ‘saturation’ constraint also afflicted
the particular value of the factor (0.32 rather than about 0.5
as suggested by the distribution of the data, Figure 4).

New curve for length-dependent significance of pairwise
sequence similarity
The original HSSP-curve was derived for sequence identity,
not for sequence similarity (Sander and Schneider, 1991). The
functional dependence between similarity and length appeared
comparable to the one between identity and length (Results).
This prompted a similar definition for the separation between
true and false positives based on similarity:

pS(n 5 n 1 420 ·L–0.335 · (11 e–L/2000) (3)
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Fig. 4. Pairwise sequence similarity versus alignment length. (A) Correctly
detected structural homologues; (B) false positives. Open circles, original
HSSP-curve (Sander and Schneider, 1991) (eqn 1); filled triangles, new
curve proposed here (eqn 3).

where L gave the number of residues aligned between two
proteins; pS defined cut-off for the percentage of residue
similarity over theL aligned residues; andn described the
distance in percentage points from the curve (n 5 0 plotted
in Figure 4).

Sequence-space-hopping
Suppose proteinsA0 and B0 were less than 25% identical;
family A is given by: {A0, A1,..., An} (such that all proteins in
the family A are more than 25% identical toA0); analogously
family B is given by: {B0, B1,..., Bm}. Although A0 and B0
differed by more than 75%, it may well be true that both were
aligned to the same sequences, i.e. that for somei and j: Ai 5
Bj. If this is the case, ‘sequence-space-hopping’ refers to
simply extending both familiesA andB to become: {A0, A1,...,
An, B0, B1,..., Bm} (Figure 1). Technically, I described this
situation by compiling a simple matrixH(A,B) that contained
the number of overlapping proteins (i.e. those contained both
in family A and B) between all proteins in the test set (792
chains) and all proteins in the search set (5646 chains). For
example,H(A,B) 5 5 implied that test proteinA and search
proteinB had five identical proteins in their family alignments.
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The family alignments were taken from the HSSP database
(Schneideret al., 1997) with a cut-off at: HSSP-curve1 10%
(n 5 10 in eqn 1), i.e. for alignments longer than 80 residues,
35% pairwise sequence identity was required. All protein pairs
(A,B) in the twilight zone were investigated for whichH(A,B)
was larger than zero. Note, the concept of sequence-space-
hopping explored here is being used in everyday sequence
analysis. The novel idea introduced by others (Abagyan and
Batalov, 1997; Neuwaldet al., 1997; Parket al., 1997) was
NOT to use sequence-space-hopping, but to use it for reducing
false positives in large-scale sequence analysis. Here, I simply
applied this concept was applied to the large data set explored,
and investigated its usefulness in dependence on various
parameters.

More-similar-than-identical rule
A simple rule-of-thumb was explored: accept hits only if the
level of sequence similarity was higher than the level of
sequence identity. This rule may appear to be non-selective in
that similarity would always be larger than identity; however,
for the given definition of similarity (using the McLachlan
metric), this was not the case.

Results
Number of false positives exploded in twilight zone
In contrast to 1990, when Sander and Schneider (1991)
compiled their data, now protein pairs of dissimilar structure
were detected above the 30% cut-off (Figure 2A). And these
were not exceptions: at a level of 32% (HSSP-curve1 7%,
i.e. n 5 7 in eqn 1), the number of false positives already
equalled that of homologues. For the original HSSP-curve the
number of false positives was 20-fold higher than the number
of true pairs. The transition from 20 to 30% sequence identity
was highly non-linear for true, and false positives (logarithmic
scales in Figure 2): the number of true pairs rose by a factor
of 5, that of false pairs by a factor of 200 (Figure 2B). Thus,
below the region of significant pairwise sequence identity
(.34%) the population of false positives exploded. However,
also the vast majority of homologues had less than 30%
sequence identity.

Functional shape of original HSSP-curve adequate
The functional shape of the original HSSP-curve proved to be
basically correct (Figure 3, grey line with triangles). However,
the larger data set analysed here revealed several problems in
detail (Figure 3B). (i) A threshold of 25% was not reasonable
for an alignment length below 150–200 residues. (ii) Above
an alignment length of about 100 residues, the derivative of
the curve separating true and false positives should be lower
than at lengths below 80. I attempted to solve these problems
by defining a new curve for separating true and false positives
(eqn 2; Figure 3, grey line with dotted circles). The particular
functional form guaranteed an approximate saturation for long
alignments. For alignments shorter than 11 residues eqn 2
yielded values above 100%. However, this was acceptable as
100% identity for fragments of 10–11 residues doesnot imply
structural similarity (Cerpaet al., 1996; Minor and Kim, 1996;
Muñoz and Serrano, 1996). The new curve saturated around
20% for alignments over more than 250 residues.

Defining a curve for pairwise sequence similarity
Compiling sequence identity neglects the physico-chemical
nature of amino acids. Any multiple sequence alignment
illustrates that, for example, the feature hydrophobicity is more



B.Rost

Fig. 5. Accuracy and sensitivity for detecting homologues in the twilight zone. How to choose the cut-off line for automatic database searches? The graphs
A–D illustrate the pros and cons of particular choices. Given are the cumulative numbers of correctly detected homologues (true positives,A), and of false
positives (B), as well as, the cumulative percentages of all correctly detected homologues (true positives,C), and of all homologues that were missed (false
negatives,D) in dependence of the cut-off distance from the thresholds defined in eqn 1–3 (parametern). Thresholds: (1) HSSP-curve (eqn 1), (2) new curve
for sequence identity (eqn 2), (3) new curve for sequence similarity, (4) subset of proteins for which similarity is larger than identity (grey line in D: false
negatives for this subset), (5) simple cut-off according to sequence identity disregarding alignment length (as often used in practice). Note: counts of true
positives for the simple sequence identity cut-off (no alignment length) did not even fall into the interval displayed.

conserved than is the residue type. For the million protein
pairs investigated here, this was reflected in a shift of the
scatter plot towards lower percentages (Figure 4). In particular,
for longer alignments false positives fall below 15% pairwise
sequence similarity. This prompted the introduction of a
threshold specifically for sequence similarity (eqn 3 in
Methods; Figure 4, grey line with dotted circles). The curve
surpassed 100% for alignments shorter than 12 residues and
saturated at about 10% for alignments over more than 500
residues.

Better detection of homologues in twilight zone by new
curves
The new curves for length-dependent cut-offs in sequence
identity (eqn 2) and similarity (eqn 3) resulted in clearly lower
false positive rates (higher accuracy) than the original HSSP-
curve (Figure 5B and C). This was paid for by a lower number
of true positives detected (lower coverage; Figure 5A). At the
n 5 0 (eqn 1–3), the old curve yielded about twofold more
true positives, but more than 20-fold more false positives
compared to the new curves for identity and similarity. Further-
more, at any level of true positives detected, the number of
false positives was smaller for the new curves (eqn 2–3) than
for the original HSSP-curve (eqn 1; Figure 7). When applying a
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cut-off according to mere sequence identity (ignoring alignment
length), accuracy dropped below 10% at levels of 30% sequence
identity (Figure 5C). Thus, detection accuracy rose almost
10-fold by the new curves.

Improving detection accuracy by expert rule
Experts often apply rules-of-thumb to visually distinguish true
and false positives. However, many of such simple rules
appeared not valid for automatic implementation. In particular,
the distributions of the number and length of insertions did
not, on average, differ between false and true positives (data
not shown). Detection accuracy improved marginally by apply-
ing the following rules: (i) compile the distance for the
similarity scorenS (eqn 3), and the identity scorenI (eqn 2),
average over both ([nS 1 nI]/2), and accept pairs when this
average is above some thresholdn; (ii) take pairs whenever
either identity or similarity surpassed the respective threshold
(eithernSÚ nI . n); (iii) take pairs if both values where above
a given cut-off (nS Ù nI . n). In contrast, detection accuracy
increased significantly by applying the ‘more-similar-than-
identical’ rule: accept hits found in a database search only if
percentage similarity is larger than percentage identity. This
constraint resulted in.98% detection accuracy atn 5 0 cut-
off levels (eqn 2–3), while 2–4-fold less true positives were
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Fig. 6. Improving accuracy by sequence-space-hopping. Distances were
compiled according to the old curve (eqn 1, ‘old’), and to the new curve for
identity (eqn 2, ‘ide’). Corresponding levels of sequence identity shown on
top. The cumulative percentages of true positives detected at a given cut-off
distance were compiled for three different hopping strategies: hits were
accepted if, at least, one (H(A,B)5 1), five (H(A,B) 5 5) or 10 (H(A,B) 5
10) proteins were common between two protein families (Methods).
(A) Cumulative percentage of true positives (false positives5 100 – true);
(B) cumulative number of true positives. The comparison of the true
positives reached by intermediate sequences and all true positives (grey line
in B, note: same as in Figure 2) showed that: (i) less than 1/1000 of the true
positives were reached by intermediate sequences; (ii) the number of pairs
reached by intermediate sequences did not explode in the twilight zone
(scale on the left covers two orders of magnitude, that on the right only
one). Numbers for true and false negatives would not make sense for this
analysis: as we don’t know all proteins, we cannot conclude that two
families are unrelated only because we don’t find a link between them.

found at this level (Figure 5A and C). Hence, applied as a
conservative cut-off in automatic database searches, this rule
proved rather powerful.

Improving detection accuracy by sequence-space-hopping

Hopping in sequence space proved successful in discarding
false positives. Already the minimal constraint to accept a pair
if at least one protein was common between the two sequence
families yielded levels of around 80% accuracy even down
to cut-off levels corresponding to 20% sequence identity
(Figure 6A, compared with,20% accuracy for the normal
thresholds Figure 5C). Accuracy increased further when more
proteins were required to be common to both families
(Figure 6A). However, sequence space hopping was possible
for only relatively few protein pairs (Figure 6B). Furthermore,
the improvement in accuracy was less clear using sequence-
space-hopping than by applying the ‘more-similar-than-ident-
ical’ rule (Figure 5).
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Accuracy versus coverage for BLAST and full dynamic
programming
The balance between accuracy (percentage of true pairs)
and coverage (percentage of all true pairs) enables choosing
automatic thresholds according to a particular purpose of a
database search. It also permits comparing different methods
(the higher the values, the better). (i) As expected, the
commonly used simple level of sequence identity (disregarding
alignment length) proved, again, an extremely bad choice.
(ii) Surprisingly, the fast database searching method BLAST
performed relatively well in comparison to the full dynamic
programming (Figure 7A). (iii) Both BLASTP version 2
and PSI-BLAST were almost as good as the full dynamic
programming with the previously defined HSSP-threshold
(Sander and Schneider, 1991). (iv) Best performance was
achieved by the new threshold for similarity (eqn 3). (v) How-
ever, the raw alignment score performed almost as well.
(vi) BLASTP (Altschulet al., 1990) performed rather similarly
to the more elaborate and more recent PSI-BLAST (Altschul
et al., 1997) (and for ‘high’ accuracy even slightly better,
Figure 7A inset; note: given that standard parameters were
chosen, this was not surprising). The corresponding thresholds
were given in Figure 5B for the dynamic programming, and
in Figure 7B for the PSI-BLAST probabilities.

Many false negatives at reasonable cut-off values
The number of false negatives is often of interest, i.e. the
number of proteins that belong to a structure family but were
not detected above a given cut-off. For the data sets used here,
the cumulative percentage of false negatives was extremely
high for all reasonable cut-off levels (Figure 5D). The vast
majority of all pairs of proteins with similar structure populate
the midnight zone below 10% sequence identity (Rost, 1997).
Thus, the extremely high false negative rates proved that
methods aligning two proteins merely based on the pairwise
levels of sequence homology clearly fail to find the gold mine
of database searches (and that older analyses that failed to
describe this effect were based on biased data sets).

Thresholds for practical use
For simplicity the functions (eqn 1–3) were explicitly provided
in tables (Rost, 1998). At levels ofn 5 0 (eqn 1–3) the
cumulative number of true positives were (Figure 5): HSSP-
curve (eqn 1), 12%; new identity curve (eqn 2), 56%; new
similarity curve (eqn 3), 73%. In order to achieve levels of
99% correct hitsm percentage points have to be added to the
curves, wherem was HSSP-curve,m 5 8; new identity curve,
m 5 5; new similarity curve,m 5 12. For comparison,
applying the ‘more-similar-than-identical’ rule yielded levels
above 99% down tom 5 –1.

Conclusions

Rapid transition from trivial to needle-in-haystack problem
The twilight zone of sequence pair alignments (20–35%
pairwise sequence identity) was characterized by two non-
linear transitions. (i) The number of homologues (true positives)
rose by a factor of about eight (Figure 2A). I obtained a
similar result from analysing the first four entire genomes
(Rost, 1997) which indicated that this result was general, rather
than database dependent. (ii) The number of false positives
rose by a factor of 5000 (Figure 2B). Hence, separating true
and false positives switched from a trivial task (above 35%)
to the problem of finding needles in a haystack (20–30%).
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Fig. 7. Accuracy versus coverage for various methods and thresholds.
Accuracy was defined as the cumulative percentage of true positives (actual
true/all actual), coverage as the percentage of true positives that were
detected at a given threshold (actual true/all true). (A) Thresholds and
methods showed:∆identity, new threshold for length-dependent sequence
identity (eqn 2);∆similarity, new threshold for length-dependent sequence
similarity (eqn 3);HSSP-curve, curve proposed by Sander and Schneider
(1991; eqn 1);%identity, threshold given by sequence identity alone, i.e.,
disregarding alignment length;alignment score, score used for the dynamic
programming optimization MaxHom;blast2, BLASTP version 2 (Altschul
and Gish, 1996);psi-blast, BLASTP version 3 (Altschulet al., 1997), run
with standard parameters. The values for the BLAST methods were based
on the probability scores reported by these algorithms. The BLAST methods
did not report all pairwise alignments, thus the data set had to be reduced to
the subset for which aligned pairs were reported by all three methods
(MaxHom, BLASTP2, BLASTP3). Note that whereas the curves for the
BLAST methods, as well as for identity and similarity are likely to hold up,
in general, the curve for the alignment score is valid for the particular
implementation of the dynamic programming in MaxHom, and for the
particular choice of parameters (Methods). (B) Detail of the relation
between the BLAST probability (here for psi-blast), and the cumulative
number of true/false hits, as well as percentage accuracy and coverage.

The explosion of false positives shed light on the shape of
sequence space. From 100–35% sequence identity, any residue
exchange resulting in a stable structure maintains structure.
From 28–35% sequence identity, most residue exchanges
maintain structure. From 20–28% sequence identity, the
absolute majority of residue exchanges forming stable struc-
tures populate different protein families. Is the explosion
caused by features of structure space? If one generates protein
sequences at random (or randomly superposes non-related
proteins), the counts for most of the region above 10%
sequence identity are negligible (Rost, 1997). Thus, although
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it is obvious that we expect to find more pairs for lower levels
of sequence identity based on mere statistics, the particular
transition in the twilight zone seems not to be evident. However,
this analysis did not provide answers to whether or not the
observed explosion may reflect structural (Chung and Subbiah,
1996) and/or functional constraints.

Poor distinction between true and false positives by
sequence identity, alone

Even journals such as Cell, or EMBO provide an ample source
for the following fallacy: ‘these two fragments of 16 residues
adopt similar structures as they have more than 10 similar
residues’. Thus, one of the most important messages of this
analysis might be the repetition of a point made by others
(Sander and Schneider, 1991): high levels of sequence similar-
ity or identity donot ascertain structural similarity (Figure 5).
Instead, the levels of significant sequence identity and similarity
depend on the alignment length (Figures 3 and 4), or the
respective raw score of the alignment methods.

Better distinction by new curves for sequence identity and
similarity

The length-dependent cut-off for significant sequence identity
pioneered by Sander and Schneider (1991) needed refinement
in several ways to account for the findings from a 1000-fold
larger data set: (i) shift towards higher values for shorter
alignments; (ii) saturation for alignments longer than 150
residues; (iii) definition of new curve for levels of sequence
similarity. These tasks were solved by introducing threshold
curves for significant sequence identity (eqn 2), and for
significant sequence similarity (eqn 3). The precise definition
of the two thresholds was entirely empirical. However, the
essential functional dependency of the curves was kept similar
to what would be expected from pure statistical considerations.
Although not true for all problems (Nielsenet al., 1996), on
average, sequence similarity was marginally more successful
than identity in distinguishing true and false positives. The
new curves improved accuracy at a given coverage (Figure 5
and 7). Additionally, this analysis supplied detailed levels for
expected accuracy and coverage for the curves defined, as
well as for standard BLAST searches (Figures 5 and 7).
Such estimates may have implications for automatic database
searches. They also shed light on the comparison between
sequence alignments and threading techniques that both only
make use of pair comparisons (rather than using family specific
profiles): already at levels of 25% sequence identity, pair
alignments detect only 10–30% true positives. This is below
the level of what threading techniques achieve in the interval
0–25% sequence identity (Sippl, 1995; Fischer and Eisenberg,
1996; Russellet al., 1996; Rostet al., 1997).

Improved accuracy by ‘more-similar-than-identical’ rule and
sequence space hopping

The number of false positives was significantly reduced by
two techniques (only the first of which was novel to this
work). (i) The ‘more-similar-than-identical’ rule: 95% of all
pairs for which percentage similarity was larger than percentage
identity had similar structures. Thus, this constraint clearly
improved detection accuracy. The cost was low coverage: for
only 10% of the structurally similar pairs the percentage
similarity was larger than percentage identity. This might be
explained by the fact that half of the protein, on average,
embedded in loop regions, may tolerate residue exchanges that
do not conserve physico-chemical properties (and thus decrease
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the overall average more than the few to-be-conserved-regions
increase it). (ii) The usage of ‘multi-links’ (Abagyan and
Batalov, 1997), ‘intermediate sequences’ (Parket al., 1997),
‘transitivity’ (Neuwald et al., 1997), or ‘sequence space
hopping’: most protein pairs that contained a similar subset of
identical proteins in their respective sequence families were
found to have similar structures even at low levels of sequence
homology. Obviously, the validity of transitivity (detection
accuracy) between protein families (Figure 1) depended on
the distance between the families (Figure 6). Interestingly, the
improvement of accuracy hardly depended on the number of
proteins required to be common to two families. This suggested
that although the vast majority of protein pairs with 25%
sequence identity had dissimilar structures, the ‘islands’ popu-
lated by structure families were well separated. Unfortunately,
for the data set explored here, the yield of this analysis was
found to be very low: on average only one in 1000 pairs was
reached via intermediate sequences (Figure 6). Furthermore,
sequence-space-hopping resulted in clearly lower coverage/
accuracy ratios than did the application of the ‘more-similar-
than-identical’ rule (Figures 5 and 6).

Beginning of the 90’s: over-estimation of sequence alignment
methods
Until 1996, very few people had taken up the laborious
task of objective large-scale analyses of protein sequence
comparisons. Partially, because automatic structure comparison
methods are fairly recent. The few earlier workers (Sander
and Schneider, 1991; Vogtet al., 1995; Gotoh, 1996) based
their work on data sets of about 1000 pairs of protein structure
alignments. Gotoh (1996) and Vogtet al. (1995) used the same
set (Pascarella and Argos, 1992) for testing different alignment
methods, and a variety of substitution metrices. They focused
on monitoring the detailed accuracy in terms of number of
residues correctly aligned. Due to the small data set Vogtet al.
(1995) found about 98% true positives at 30% sequence
identity (ignoring alignment length), and 50% true positives
at 20% sequence identity. For the 1000-fold larger data
set used here the corresponding values were quite different
(ignoring alignment length): 11% true positives at 30%
sequence identity, and 5% true positives at 20% identity.
However, even the more conservative analysis introducing
the importance of alignment length for levels of significant
sequence identity (Sander and Schneider, 1991) still over-
estimated the possible levels of sequence identity between
proteins of dissimilar structure.

End of the 90’s: database searches do not reach the
gold mine, yet
The thresholds for sequence identity and similarity defined
here, as well as those established by others (Abagyan and
Batalov, 1997; Brenneret al., 1998) complemented the levels
for ‘significance’ provided by BLAST (Altschul and Gish,
1996), FASTA (Pearson, 1996) or other statistical analyses
(Bryant and Altschul, 1995) by addressing the question ‘how
significant is the significance of the respective alignment
method?’. Based on quite different data sets the principal
messages were similar: (i) most proteins of similar structure
were not found by pairwise sequence comparisons at reasonable
cut-off thresholds; (ii) raw scores from dynamic programming
methods were comparable to the original length-dependent
cut-off thresholds for sequence identity (Sander and Schneider,
1991); (iii) dynamic programming was only slightly superior
to BLAST searches (Altschul and Gish, 1996; Altschulet al.,
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1997). However, in detail the numbers differed between the
recent analyses. Obviously, the absolute values depended
crucially on the particular choice of the data set. Abagyan and
Batalov (1997) analysed various substitution metrices on a
data set comparable to the one used in this analysis. They
concluded that raw alignment scores provide better separations
between true and false positives than do length-dependent
cut-offs for sequence identity and similarity. The difference
between their result, and the one shown here may result from
the fact that Abagyan and Batalov (1997) used the optimal
choice of all parameters for comparing the raw alignment
score to sequence identity and similarity. Brenner and co-
workers have analysed the accuracy and coverage for various
statistical scores (Brenneret al., 1998). They used a completely
different data set than I did. An approximate comparison of
the two analyses was possible by the reference point of
simple identity (ignoring alignment length). It seems that the
performance for the best separation method they find (new
FASTA) was comparable to the improved, simple thresholds
defined here (eqn 2–3). Here, the BLAST probability was
found to be a relatively good way to separate true and false
positives (Figure 7A): it was only slightly inferior to the raw
dynamic programming alignment score, results for which hold
up exclusively for the particular choice of parameters and the
particular alignment algorithm used.

Thresholds in practice

The advantages of the length-dependent levels of identity and
similarity (eqn 2–3) over other thresholds (Abagyan and
Batalov, 1997; Alexandrov and Soloveyev, 1998) was that
these thresholds, in principle, are applicable to any alignment,
and may relate more explicitly to structure. Identity and
similarity can be compiled easily without having to re-do the
entire database search. In practice, this does not always hold
up: (i) different parameters (e.g. the way in which gaps are
treated) may result in different alignments; and (ii) the similar-
ity values compiled hold for the choice of a particular metric
(here McLachlan). Additionally, the thresholds introduced here
provide independent evidence for the separation, and permitted
the application of the successful ‘more-similar-than-identical’
rule.

Will the analysis hold up for the next 500 structures?

The results given here based on the largest possible data
set for which structural alignments provided a well-defined
distinction between true and false. One conclusion was that
seven years ago (Sander and Schneider, 1991) the database
was too small to capture the details. Will this also be true in
2005? Answers have to remain speculative. (i) Although the
database used in 1990 was 1000-fold smaller than the one
used here, some principle findings were verified. (ii) Assuming
that there are only 1000 folds in nature (Chothia, 1992), and
that these correspond to about 10 000 families, then even the
full catalogue of all protein sequences would yield a data set
essentially only 30 times larger than the one used here (note:
the data set used corresponded to about 300 different folds
aligned against about 1000 families).

Rather more accurate, or more sensitive?

An accurate and sensitive distinction between true and false
positives is important for automatic database searches. The
new curves introduced here (eqn 2–3) proved slightly more
sensitive (higher coverage) and more accurate than the previ-
ously proposed curve (Sander and Schneider, 1991). The
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accuracy increased significantly by applying the ‘more-similar-
than-identical’ rule, and by sequence space hopping. However,
accuracy was gained at the expense of coverage. Which is more
important? Clearly, the evolutionary information contained in
multiple alignments is the single most important contribution
to improving protein structure prediction in the 90’s (Rost and
Sander, 1996; Rost and O’Donoghue, 1997). Is the gain by
increased diversity more important than the loss of accuracy
when using alignments for structure prediction? The answer
depends on the particular prediction goal. For example, for
secondary structure prediction diversity is more important than
accuracy (cut-off at 25% versus that at 30%), whereas for
the prediction of solvent accessibility the opposite is true
(unpublished). Furthermore, as databases grow coverage may
be less important than accuracy. Irrespective of individual
preferences, the sharper the knife cutting between true and
false positives, the better. This analysis has sharpened the
knife a little, and added new optional tools to it.
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