
Copyright 0 1996 hy the  Genetics Society of America 

On  Genetic Map Functions 

Hongyu Zhao* and  Terence P. Speedt 

*Department of Biostatistics,  University of California, Los Angeles, California 90024 and tDepartment of Statistics, 
University of California, Berkeley, Californ.ia 94720 

Manuscript received June 12, 1995 
Accepted for publication  December 20, 1995 

ABSTRACT 
Various genetic map  functions have been proposed to infer the unobservable  genetic  distance between 

two loci from  the observable recombination  fraction between them. Some map functions were found 
to fit data  better  than  others. When there  are  more  than  three markers, multilocus recombination 
probabilities cannot be  uniquely determined by the defining property of map functions, and different 
methods have been  proposed to permit  the use  of map functions to analyze multilocus data. If for a 
given map  function,  there is a probability model for recombination that can give  rise to it, then  joint 
recombination probabilities  can  be deduced  from this model.  This provides another way to use map 
functions in  multilocus analysis. In this paper we show that stationary renewal processes give rise to most 
of the  map  functions in the  literature.  Furthermore, we show that  the interevent  distributions of these 
renewal processes can all be  approximated quite well  by gamma  distributions. 

G ENETIC maps consist of different kinds of markers 
positioned along  a  chromosome, with their rela- 

tive locations measured in the  map units known  as centi- 
Morgans. During meiosis, crossing over occurs after ho- 
mologous chromosomes pair and duplicate, resulting 
in a four-strand structure. Each  crossover  involves two 
strands of different origins (nonsister  pairs). The ge- 
netic map distance in Morgans between a pair of mark- 
ers on the same chromosome is the average number 
of crossovers occurring between these markers during 
meiosis on  one chromatid. Because  crossovers are not 
observable, a genetic map  function r = M ( d )  is often 
used to infer genetic distance ( d )  from the observable 
recombination fraction ( r )  . 

In his  1919 paper, HALDANE made three contributions 
to the study of genetic map functions, as  well  as defining 
them. By assuming no crossouer interference (STURTEVANT 
1915; MULLER 1916),  he derived the map function r = 
'/*(1 - e-") with  inverse d = - '/' log(1 - 2r) ;  he also 
proposed  the empirical inverse map  function d = 0 . 7 ~  
+ 0.3( - '/2 log(1 - 2 r ) )  to account  for crossover inter- 
ference in the  data  then available, and  he introduced 
a differential equation  method  that  permitted  the con- 
struction of a variety of map functions. 

A commonly used measure of the  degree of crossover 
interference is the  coincidence coefficient C involving 
three markers. Letting pili* be the probability of il re- 
combinations in the first interval and & recombinations 
in the second interval, i l ,  4 = 0, 1, Cis defined by 

C =  P I  1 

(PI0 + Pll) (pol  + Pll). 
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The case  of C = 1 corresponds to no crossover interfer- 
ence, while C < 1 and C > 1 correspond to positiue and 
negative crossover interference, respectively.  Because 
the p,,  can be directly estimated from recombination 
data in  most experimental organisms, C is often used 
as an empirical index of the  degree of crossover inter- 
ference. 

One implicit assumption underlying the use  of a ge- 
netic map  function  for one organism is that  the func- 
tional relationship between genetic distances and re- 
combination fractions does not vary across the  genome 
in this organism. This assumption implies that  Cshould 
only depend  on  the  map lengths of the intervals be- 
tween three markers of interest, say d and h. Noting 

{ M ( d )  + M (  h )  - M ( d  + h ) ) / 2 ,  we have 
that p10 + p11 = M ( 4 ,  pol + PI, = M ( h ) ,  and pll = 

Letting h -, 0, and assuming limbo M ( h ) / h  = 1, we 
obtain the differential equation 

" ( d )  = 1 - 2 C ( d ) M ( d ) .  (1) 

Different choices of C( d )  lead to different map func- 
tions, which will be discussed later. 

One of the difficulties in using genetic  map func- 
tions to construct  genetic maps is that when there  are 
more  than  three markers, the multilocus recombina- 
tion probabilities cannot  be uniquely determined from 
the  map  function,  a  point  that was made by FISHER 
(1947). This identifiability problem can be solved by 
postulating that  the probability that  there is an  odd 
number of  crossovers across a  set of (disjoint) intervals 
only depends  on  the total length of these intervals 
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(GEIRINGER 1944; SCHNELL 1961).  The underlying as- 
sumption is that  the distance between two disjoint in- 
tervals is irrelevant to the joint recombination probabil- 
ities in these two intervals. However experimental 
results suggest that  the  degree of interference varies 
with the distance between two intervals: the smaller 
the distance, the  stronger  the  interference.  Thus,  the 
above approach is not consistent with experimental 
results. Nevertheless, this assumption can be and has 
been used to calculate joint recombination probabili- 
ties from  map functions. LIBERMAN and KARLIN (1984) 
proved that  a necessary condition to guarantee  that 
the  recombination probabilities obtained in this way 
are nonnegative is that ( -l)kM‘k)(0) 5 0 for all k. They 
(inappropriately)  termed  map  functions  that always 
give  rise to nonnegative recombination probabilities 
“multilocus feasible” and showed that many map func- 
tions that were found to fit data well did not satisfy 
these criteria. 

If crossovers are viewed  as a stochastic point process 
along the chromatid and  a given map function can be 
realized from a crossover  process,  multi-locus  recombi- 
nation probabilities compatible with the map function 
can be obtained by assuming  crossovers are generated 
from this point process. Two  classes  of point processes 
have been studied extensively  in the literature in the 
context of modeling crossover interference: renewal pro- 
cesses,  reviewed  in BAILEY (1961) and MCPEEK and SPEED 
(1995),  and count-location processes, studied by KARLIN 
and  LIBERMAN (1978) and RISCH and LANGE (1979). 

In this paper, we show that for most map functions 
in the  literature  there exist stationary renewal  processes 
that give rise to them,  and so these map functions are 
compatible with the analysis of multilocus data via this 
approach. Moreover, the  interevent distributions of the 
stationary renewal processes corresponding to most 
map functions can be closely approximated by gamma 
distributions. 

A special  class of stationary renewal  processes, called 
chi-square models, which  have chi-square interevent dis- 
tributions with  even degrees of freedom, was found to 
give good fit to data from a variety of organisms (ZHAO 
et al. 1995b). This class  of models, which  evolved from 
an ordinary renewal process model for crossovers on a 
single meiotic product proposed by FISHER et al. (1947), 
was mainly studied because of its mathematical tractabil- 
ity (MCPEEK and SPEED 1995).  It was reintroduced by 
Foss et al. (1993) from a biological perspective, moti- 
vated by observations from experiments on gene conver- 
sion although  there  are now serious doubts  concerning 
the appropriateness of this motivation (see FOSS and 
STAHL 1995).  The chi-square model was conveniently 
denoted as Cx( Co) m, which corresponds to a chi-square 
renewal  density  with 2(m + 1) degrees of freedom. US- 
ing the  method of maximum likelihood, chi-square 
models were fitted to different organisms by ZHAO et aZ. 
(1995b).  The estimates of m for Drosophila ( m  = 4) and 

Neurospora ( m  = 2) were the same as those obtained by 
FOSS et al. (1993), who estimated m from the observed 
ratio of Cx to Co. S. LIN and T. P.  SPEED (unpublished 
results) fitted chi-square models to data on six loci from 
the CEPH consortium map of human chromosome IO ,  
which was analyzed by  WEEKS et al. (1994) using other 
models, and estimated the  parameter m to be 3. Their 
results  suggested the presence of  crossover interference 
during  human meiosis.  MCPEEK and SPEED (1995) com- 
pared the fit of the stationary renewal process model 
with gamma interevent distributions (the gamma 
model) with that of other models using one large data 
set  of Drosophila and  found  that  the gamma model 
gives a  better fit than all other models. This fact, to- 
gether with the observation that for most map functions 
the interevent distributions for the  corresponding sta- 
tionary renewal  processes can be closely approximated 
by gamma distributions, suggest that to some degree 
the chi-square model, and  more generally, the gamma 
model, is able to capture  the  important features of the 
unobservable crossover  process. 

After raising the question “What is a genetic map 
function?”, SPEED (1995) discussed in detail many is- 
sues related to map functions. It should be pointed out 
that  other  methods have  also been  proposed to extend 
map functions to handle multilocus data (OWEN 1953; 
MORTON and MACLEAN 1984). 

MAP FUNCTIONS AND STATIONARY 
RENEWAL PROCESSES 

When modeling crossovers as a  point process, a dis- 
tinction should  be made between the  point process on 
the  four  strand  bundle, the chiasma process, and the  point 
process on a single strand, the crossoverprocess. Modeling 
the crossover process as a renewal process has a  long 
history. FollowingJENNINGs (1923) and MATHER (1936, 
1937), FISHER et al. (1947) modeled crossing  over  as a 
renewal process; that is,  crossovers along a single strand 
were assumed to be  formed as a regular sequence start- 
ing from the  centromere, with the length between two 
adjacent crossovers always following the same distribu- 
tion. Although it was known that crossovers  take place 
when four strands (chromatids)  are  present  during mei- 
osis,  FISHER et al. (1947) only modeled the crossover 
process on a single strand, without relating it to the 
chiasma process on the four-strand bundle. On the 
other  hand, most later work modeled the chiasma pro- 
cess  as a renewal process and related the crossover pro- 
cess to  the chiasma process (CARTER and ROBERTSON 
1952;  COBBS  1978;  STAM 1979). The assumption that 
crossovers occur starting from the centromere  and pro- 
gressing  toward the telomere is  now  known not to be 
true (WHITEHOUSE 1982),  but it is  still a convenience. 
To  connect the chiasma process to the crossover pro- 
cess, assumptions have to  be made concerning  the way 
nonsister pairs are involved  in  crossovers. TWO types of 
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interference can be distinguished: chiasma interference, 
where chiasmata on the four-strand bundle do  not oc- 
cur  independently of each other,  and chromatid  interfa- 
ence, where the choices of nonsister pairs involved  in 
different chiasmata are  not  independent. 

The observation of  crossover interference on  the 
meiotic products (single strands) can be the result of 
chiasma interference  alone,  the result of chromatid 
interference  alone, or the result of both types  of inter- 
ference.  It is interesting to note  that  the  operation of 
two types  of interference can lead to no  apparent cross- 
over interference. Consider the case when the chiasma 
process follows a stationary renewal process with inter- 
event  distribution  being  the gamma distribution with 
shape  parameter  and  there is complete positive 
chromatid  interference, i.e., the strands involved  in one 
chiasma are never involved  in the closest chiasmata to 
its left and to its right. It is  easy to see that  the distance 
between two crossovers on a single meiotic product 
from this process follows the gamma distribution with 
shape  parameter 1, i.e., the  exponential distribution. 
Therefore crossovers on a single strand  appear  to  occur 
independently of each other. This example shows that 
two types  of interference  cannot  be  separated based on 
single-strand recombination data, where meiotic prod- 
ucts from a single meiosis are recovered separately. 
Therefore  tetrad  data, where all meiotic products from 
a single meiosis are recovered together,  are often used 
to detect  chromatid  interference. Since there is no 
strong and consistent evidence of chromatid interfer- 
ence  (WHITEHOUSE  1982), it is generally assumed that 
there is no chromatid  interference  (NCI) in the models 
proposed in the  literature. 

The assumption of  NCI imposes certain constraints 
on both  recombination and tetrad probabilities (SPEED 
et al. 1992; ZHAO et al. 1995a). These constraints further 
impose constraints on map functions (SPEED 1995): 

0 5 M ( d )  5 %, 
M ' ( d )  2 0,  

M " ( d )  5 0. 

It is also  obvious that if the chiasma point process is 
simple and stationary  in the  map distance metric, then 
M ( 0 )  = 0 and " ( 0 )  = 1 (DALEY and VERE-JONES 1988, 
Section 3.3). We  will consider map functions that are 
defined on a finite interval [O, L] and those defined [O, 
00) separately. By imposing one more condition, we  say 
a function M defined on [O, 00) satisfies condition (A) if 

M(0)  = 0, (AI) 

M ' ( d )  2 0, for all d, (A2) 

Apart from (A5), these conditions  are necessary un- 
der the assumptions of NCI and that  the chiasma pro- 
cess  is a simple stationary point process. Condition (A5) 
postulates that two markers that  are very far apart on 
the same chromosome can be considered very  loosely 
linked, effectively behaving like markers on different 
chromosomes and segregating independently. More- 
over, we have the following theorem to characterize 
this class  of map functions. The proof is  given  in the 

Theorem 1: Let Mbe the map function for a stationary 
renewal  chiasma  process  satisfymg  NCI on a chromosome 
arm of infinite length. Then M satisfies (A). Conversely, 
suppose that a function M from [O, 00) into [O, satis- 
fies (A). Then  there is a stationary renewal chiasma 
process whose map function is M and whose  renewal 
density is -M". 

For a map function M defined on [O, L] where L < 
00, we  say that M satisfies condition (B) if 

APPENDIX. 

M ( 0 )  = 0, (B1) 

M ' ( d )  2 0, for all d ,  (B2) 

" ( 0 )  = 1, (B3) 

M " ( d )  5 0, for all d, (B4) 

M ' ( L )  = 0, (B5) 

M ( L )  = I/*. (B6) 

We  say that Msatisfies condition (B) ' if it satisfies (B l )  - 
(B4) and 

M ' ( L )  > 0, (B5) 

M ( L )  < I/*. (B6)' 

For map functions defined on [O, L ] ,  we have the 
following analogue of Theorem 1 with the proof given 
in the APPENDIX. 

Theorem 2: Let M be the map function for a station- 
ary  renewal  chiasma  process satisfying NCI on  a chromo- 
some arm of finite length. Then M satisfies (B) or (B)' 
for any L. Conversely, suppose that  a function M from 
[O, L] into [O, satisfies (B) or (B)'. Then  there is a 
stationary renewal chiasma process whose map function 
is M and whose renewal density is - M" when d 5 L. 

VARIOUS MAP FUNCTIONS 

In this section, we apply our two theorems to some 
map functions in the  literature to see if there  are sta- 
tionary renewal processes that can give  rise to them. 
HALDANE (1919): MGi(r) = 0.7r + 0.3(-1/2 log(1 - 

2r ) ) .  It is easy to see that " ' ( 0 )  = 0, limr1,2 " ' ( r )  
= a, ("I)' > 0, (M- ' )  (0) = 1, lim,.+1,2 ("I) = 03, 
and (M"l)rr  z 0. So M ,  satisfies condition (A), and 
there is a stationary  renewal  process  giving  rise to MHz. 

LUDWIG (1934): MI*( d )  = sin(2d). Clearly this 
should only be  considered  a possible map  function in 
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FIGURE 1.-Comparison between the interevent density 
( - M k )  of the stationary  renewal  process  corresponding to 
the Kosambi  map function and two gamma densities: 
gamma(4,2) and gamma(2u,u), where u is 1/(2 log(2) - 1) 
= 2.6. 

the interval [O, 1 / 4 ~ ] ,  and it is  easy to check condition 
(B) in this case, with I ,  = '/47r. Thus  there is a stationary 
renewal process having it as a  map  function,  although 
the  chromosome  arm is rather  short. 

KOSAMBI (1944): MK( d )  = tanh (2d ) .  Since nil,( d )  

e - 2 d ) S ,  it is  easy to check that (A) is satisfied. The inter- 
event distribution for the  corresponding stationary re- 
newal process is 16(e2d - e - 2 d ) / ( e 2 d  + e?)'. KOSAMBI 
(1944) found  that this map  function gave good fit to 
Drosophila data. FISHER et al. (1947) noticed  that  the 
Kosambi map  function is  very close to the  map  function 
from a renewal process with interevent  distribution 
being chi-square with four  degrees of freedom. Both 
-M ' i  and  the density of gamma(4,2)  are  plotted in 
Figure 1. The density of a gamma(b,g) variable is 
[ b ( b ~ ) ~ ' e - " ] / T ( g ) .  The mean and variance of -M'k 
are  and  log(2) /2  - '/+ The density of gamma(2u, 
u ) ,  where u = 1/(2 log(2) - l),  which has the same 
mean and variance as -M';c, is  also plotted in Figure 1. 

CARTER and FALCONER (1951): K;,(T-) = 1/4(tan"(2r) 
+ tanh-' (27)). Here McF( d )  is the solution of the differ- 
ential equation M ' ( d )  = 1 - 16M4(d). This map function 
was found to fit mouse data better than other map func- 
tions (CARTER and FALCONER 1951). Since M'&(d) = 
-64M&;( d )  (1 - 16M&( d )  ) , and M,, 5 (A) is  satis- 
fied. The corresponding stationary  renewal  process  has 
interevent distribution 64M;?.,(d) (1 - 16M&(d)).  The 
Carter and Falconer map function -M'&(d) together 
with the density of gamma(14,7) and  gamma(l6,S)  are 
plotted in Figure  2. It was found  that Cx( C O ) ~  and Cx( C O ) ~  
give the best fit for two mouse data sets in BLANK et al. 
(1988) and TODD et al. (1991) (ZHAO 1995); the choice 
of the Carter and Falconer map function would  be  equiv- 
alent to using the CX(CO)~ model. 

STURT (1976): Ms(d)  = 1/2(1 - (1 - $',)e 1, 
0 5 d 5 L. This map function arises via a count-location 

= 4(2" + e-2d)-2, and M'k(d)  = -16(e2fi - e -2d) / ( e2d  + 

- d ( Z L - I ) / I ,  
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FIGURE 2.-Comparison between the interevent density 
(-Mcl.) of the  stationary  renewal  process  corresponding to 
the  Carter and Falconer map function and two gamma densi- 
ties: gamma( 14,7)  and  gamma(16,8). 

chiasma  process that begins  with an obligatory  crossover 
event on  the arm, followed by a Poissondistributed num- 
ber of  crossover  events  having mean 2L - 1. The total 
genetic length is thus L. This map function fails (B5) but 
satisfies (B6),  and so no stationary  renewal  process  can 
give  rise to  it. 

+ w & M F $ ( ~ T )  + w.&lk1(27), where wH = p (1 - 2p)( l  

p )  (1 - 2p)/3, WM (1 - p) ( l  - 2p)(l  - 4p),  and 
M i ' ,  M i ' ,  M;:, and M&' are  the inverse of the  Haldane, 
Kosambi, Carter-Falconer, and Morgan map functions. 
It is  easy to check that  for any p,  wH,  wK, w , ~ ,  and whf 
cannot all be positive. Indeed MR does not satisfy our 
necessary conditions (WEEKS 1994). Following RAO et 
al.'s idea, we might try to define a map  function from 
a set of n > 2  map  functions by letting " ' ( 7 )  = 

wt(p) MY1(r), where wL(p) is a polynomial in p of 
order n - 1, and M( d )  reduces to Mi( d )  when p = p ,  
for given 0 < pl < p, < - * p ,  < 1. But it can be 
shown that  for  no p can the w,(p), i = 1, 2, . . . , n, 
so defined all be positive. Therefore this approach to 
obtaining empirical map  functions from existing map 
functions would seem questionable. 

m o  (1977): Mi1(?") = wHkfb'(27) + WKMK'(27) 

- 4p)/3, WK = -4p( 1 - p )  ( 1  - 4p), wcp = 32p( 1 - 

FEUENSTEIN (1979): M,( d )  = ' / n  (1 - +?2(K"L)ri) / (1 - 
( K -  l ) e2 (K-2)d  ) .  When K > 2, lim&m &(d )  = ( K  - 
1) f and so no stationary renewal process exists 
with this mapping  function. Because Mk-(d) = ( K  - 
2)2e2("d/(1 - ( K  - l )e2(K-2)")2,  M,(d) = 2 ( K  - 
2)5e2(K-Z)d (1 + ( K -  l)e2(K-2)" ) / ( I  - ( K -  l ) e Z ( w d  3 1. > 

it is  easy to verify that M,. (d)  satisfies (A) when 0 5 K 
< 2. In Felsenstein's map  functions, K is a measure 
of interference, with K > 1 corresponding to negative 
interference, and K < 1 to positive interference. The 
mean of -M;(d)  is and  the variance is log(2 - K ) /  
(2( 1 - K )  ) - 1/4 ( when K = 1). Both -&( d )  and 
the gamma distribution with the same mean and vari- 
ance  are  plotted  in Figure 3  for  different IG. Note the 
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FIGURE 3.-Comparison  between  the  interevent density ( - M i ,  solid  curve)  of  the  stationary renewal process  corresponding 
to the  Felsenstein  map  function and the gamma  density (dotted curve) having  the same mean and variance for K = 0.4, 0.8, 
1.2, and 1.6. 

close agreement between Felsenstein’s family and  the 
gamma family. 

KARLIN and LIB- (1978,  1979): Mcl,(d) = [1 
- c(1 - d / L ) ] .  This class  of map  functions arise from 
the count-location process, where c(s) = x k z o C k S k  is a 
probability generating  function of a count variable c 
with distribution ( c k ) ,  and d(1) = 2L. McL is  only  well 
defined  for finite L, It is  easy to check that (Bl)  - (B4) 
are satisfied. Because M,,.(L) = 1/2 (1  - cg) and M ,  
( L )  = c1/2L, from  Theorem 2, there is a  corresponding 
stationary renewal process for Mc12 only if (1) ~0 = 0 
and q = 0, or (2) re > 0 and el > 0. 

DISCUSSION 

In constructing  genetic maps, map  functions have 
been used to infer  the unobservable genetic distance 
between two markers from  the observable recombina- 
tion fraction between these markers. Different genetic 
map  functions embody different  degrees of  crossover 
interference  among  the crossovers. It has been ob- 
served that  different organisms have different  degrees 
of crossover interference, it so is not surprising that 
different  map  functions have been  found suitable for 
different organisms. The major disadvantage of using 
map functions is that  joint recombination probabilities 
cannot  be uniquely determined  in terms of them when 
there  are  more  than  three markers. Various approaches 
have been  proposed to extend  map  functions to handle 
multilocus data. 

One widely adopted  approach, which was suggested 
by GEIRINGER (1944) and SC:HNEI.L (1961) and thor- 
oughly studied by LIRERMAN and KARLJN (1984), em- 

bodies the assumption that  for  a  pair of noncontiguous 
intervals, the probabilities for joint recombination pat- 
terns across these intervals do  not  depend  on  the dis- 
tance between these two intervals, something  that is not 
consistent with observations. Those  map  functions  that 
can be  extended to multilocus data  through this a p  
proach have been  (inappropriately) called “multilocus 
feasible” (LIBERMAN and KARLIN 1984).  This  criterion 
excludes many functions  that were found to fit well to 
recombination  data, such as the Kosambi map  function. 

In this paper,  another approach is proposed to ex- 
tend  map  functions  for the analysis of multilocus data. 
If for any  given map  function, we can find  a  point pro- 
cess model  that gives  rise to this map  function,  then 
multilocus joint recombination probabilities can be ob- 
tained  in  a way that is completely compatible with the 
map  function. Stationary renewal processes can give  rise 
to many map functions. From this perspective, most 
map  functions  that  are not multilocus feasible ac- 
cording to KARLIN and LIBERMAN can in fact be ex- 
tended to permit  the analysis  of multilocus data. 

Another measure of interference, called S4 by Foss 
et al. (1993), is formally defined as 

S4( d )  = lim  lim PI 1 

k.0 k.0 ($10 + P I 1  1 ( P O I  + p 1 J  

where the pi,a2 are as in the definition of C, with one 
interval having map  length h, the  other interval map 
length k, and  the two intervals being  separated by a 
map distance d. It seems that S, captures  more im- 
portant aspects of  crossover interference  than  does C 
(MCPEEK and SPEED 1995). Though S4 cannot  be  deter- 
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FIGURE 4.-The  interevent  density  of  the  stationary  renewal  process  corresponding to the map function M that satisfies M' = 
1 - (2M)"for n = 1, 3, 5, 6. 

mined from a map function, it can be calculated given 
a  particular way  of generalizing map  functions to 
multilocus data  and compared to empirical estimates. 
For the count-location processes, S, is constant  for all d, 
whereas S4 has various forms for  the stationary renewal 
processes. The values  of S4 as a  function of d were esti- 
mated  from  a large Drosophila data set and were very 
close to the S4 values under  the chi-square model  (Foss 
et al. 1993, MCPEEK and SPEED 1995). 

Map functions  cannot and should not  be expected 
to reflect chiasma or crossover interference  in  anything 
but  the most superficial way. Indeed,  a  map  function 
could arise from  both  the stationary renewal process 
and  the count-location process, although  the  interfer- 
ence differs greatly between these two classes  of models. 
For example,  the  map  function M ( d )  = d/ (1 + 2 d )  
could arise from  a stationary renewal process with inter- 
event distribution 4(1 + 2d)- ' ,  and it could also arise 
from a count-location model with ck = ' / 2 k ,  where iz 
2 0 (LIBERMAN  and KARLIN 1984).  Under  the  count- 
location model,  the  length of the  chromosome  defined 
by c = ( c k )  is so M ( d )  is only defined  on [o, 1/2], 

while d can range from 0 to 00 for  the stationary renewal 
process model. 

Note that  for  the stationary renewal processes corre- 
sponding to most map  functions discussed, the  inter- 
event distributions can often be well approximated by 
gamma distributions. Recall that  the  Haldane, Kosambi, 
and Carter and Falconer map  functions  are all solutions 
to the differential Equation 1 with C(d)  = (2M)"". It 
can be shown that  map  functions M obtained via this 

approach always  satisfy (A). Figure 4 displays plots of 
- M r r ( d ) ,  the  interevent distribution of the  correspond- 
ing stationary renewal process for n = 1 (Haldane  map 
function), n = 3, 5, and 6. The cases n = 2 and 4, 
which correspond to the Kosambi map  function and 
the Carter and Falconer map  function, were plotted in 
Figure 1 and Figure 2. When n is large,  the  correspond- 
ing density becomes close to a  normal  distribution. This 
suggests that if  we take the  approach  proposed in this 
paper to generalize map  functions to the multilocus 
situation,  the stationary renewal processes correspond- 
ing to most genetic  map  functions can be well approxi- 
mated by the  gamma  model, or  the chi-square model. 
This provides, to some extent,  an  explanation of the 
fact that chi-square models (and  hence gamma models) 
are flexible enough to give good fit to data  from various 
organisms exhibiting  different  degrees of interference. 

It has been assumed throughout this paper  that  there 
is no chromatid  interference.  Under this assumption, 
the  relation between the chiasma process and  the cross- 
over process and  the  relation between the chiasma pro- 
cess and  the  map  function  are simple [see SPEED (1995) 
for  a comprehensive review  of this and related  matters]. 
It was shown earlier  that  there  are situations where the 
presence of both chiasma interference and chromatid 
interference  could  lead to no  apparent crossover inter- 
ference, from which we concluded  that it is impossible 
to separate two  types  of interference from single-strand 
recombination  data. Because there is no strong and 
consistent evidence of chromatid  interference  from  the 
study of tetrad  data,  the assumption of no chromatid 
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interference is generally considered valid. The use of 
map  functions and stationary renewal processes  re- 
quires  that  the  degree of interference  be  the same 
across the  chromosome, which is an obvious  simplifica- 
tion. But a large amount of data will probably be neces- 
sary to  permit  the  detection of nonstationarity of the 
underlying process. 

In summary, we have  shown that for most genetic 
map functions, there is a  corresponding stationary re- 
newal process, and that these map  functions can be 
extended to permit  the analysis  of multilocus data by 
calculating joint recombination probabilities from their 
corresponding renewal processes. This provides an- 
other way  of generalizing a given map  function to the 
multilocus situation, although  it seems unlikely that 
there  are efficient methods to estimate genetic dis- 
tances and  other parameters from multilocus recombi- 
nation  data under completely general renewal pro- 
cesses. The calculation of multilocus recombination 
probabilities for stationary renewal chiasma processes 
is discussed  in the APPENDIX. However, comparisons be- 
tween the interevent distribution of general stationary 
renewal processes and that  of chi-square distributions 
suggest that this class  of renewal processes provides sat- 
isfactory approximations  to  the renewal processes corre- 
sponding to most genetic map functions in the litera- 
ture. With the limited amounts of data currently 
available, it will probably be  hard to distinguish these 
models, although we can look forward to many refine- 
ments in the  future. 

This work was supported by National  Institutes of Health  grant H G  
0109341.  The  authors  thank two referees for  their helpful  comments. 
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APPENDIX 

Proof of Theorem 1: Suppose the crossovers are 
from a stationary renewal chiasma process with inter- 
event density J: Without loss  of generality, we  may  as- 
sume the mean interevent distance is p = 1/2, so the 
metric is simply genetic distance. For any point .;3f1, say, 
on  the chromosome, the  chance  that  the first  crossover 
after .?Il occurs in the small interval (y,y + dy) is 

The probability of no crossovers occurring before .?I2, 
which is map distance d from is 

Po = Jdrn ( 2  [ f ( t )d t }dY .  

Using Mather's formula (MATHER 1935), which  asserts 
that  the recombination fraction r between  any two 
markers is 

where Po is the probability of zero crossovers occurring 
between these markers, we have 

M ( d )  = r = 2 { 1 - 2 Jdm [ f ( t )d tdy} .  

It is  easy to verify that M so defined satisfies (A). 
Conversely, if M satisfies (A), then 

Iom ( - M " ( t ) ) d t  = M ( 0 )  = 1. 

Thus -M" is a probability density function on [0, m) . 
If the interevent distribution in a stationary renewal 
process is -MIr, then  their mean is [r ( - t M ' ( t ) ) d t  = JOE [ ( -M"(y) )dydt  

= Jorn M ' ( t ) d t  = 

Thus,  the map function  generated from the stationary 
renewal chiasma process with interevent distribution 
-M" is 

1 (1 - 2 p Jm ( - M " ( t ) d t ) d y )  = M ( d ) .  
2 d y  

Proof of Theorem 2: Note that 

and (B6)' are true. The first part of this theorem can 
then be proved as in Theorem 1. 

If M ( L )  < and M ' ( L )  > 0, we  may define an 
extended map function M,(d) on [0, 00) as  follows: 

( M ( d )  if d < I, 

where a = - M ( L )  and a0 = M ' ( L ) .  It can be 
verified that M E ( d )  so defined satisfies (A) in Theorem 
1. So there is a stationary renewal process whose corre- 
sponding  map  function is M f i (   d )  , which coincides with 
M ( d )  on [0, L] .  If M ( L )  = and M ' ( L )  = 0, it can 
be easily  shown that  the stationary renewal process with 
renewal  density -MIr gives  rise to M. 

Calculating rnultilocus recombination  probabilities  for 
stationary  renewal  chiasma processes: Suppose that 
Yo, Y, , . . . , 'I(, are n + 1 consecutive  loci along a 
chromosome, defining n genomic  intervals I ,  = [ -?lo, . . V I  ), 
. . . , Z, = [ . 3 n - l  , . Y n )  of map  lengths d l ,  d2, . . . , d,,, 
respectively.  Extending the notation introduced earlier, 
we denote by pfl,,  ,4 ,  the joint recombination  probability 
of  having zl = 0 or 1 recombination  across  interval 4 ,  
j = 1, . . . , n. The question we address here is the  calcula- 
tion of  all  such  probabilities p = (pi , ,  , .+,) when the underly- 
ing  chiasmata  form a renewal  process  stationary  in the 
genetic  distance  metric and NCI is assumed. To  do so we 
make  use  of the so-called linkag values, denoted by z = 
( . z j , .  , J, where z~,, , ,~~ is the probability of finding no  chias 
mata  in  the union U{4$ = l} of those  intervals  for  which 
2; = 1, see  SPEED et al. (1992)  for  fuller  details. We  also 
make  use  of  some  well  known  facts from  renewal  theory 
and refer  to  FELLER  (1971)  for  derivations.  Suppose that 
we have a stationary  renewal  process  with  interevent den- 
sity f and mean  interval  length p. The distance of an  arbi- 
trary but fixed point on the  chromosome  to the next 
chiasma  to its left  (respectively right) is called  the  back- 
ward  (respectively forward) recurrence length (tradition- 
ally called "time"), and if these are denoted by ,8 and 4, 
then 

where F is the cumulative distribution function (c.d.J ) 
corresponding  to J: 

Now let us consider the calculation of the linkage 
values z = (G,, , .J. For n = 2 this is quite straightfor- 
ward. Suppose that we want to calculate zIo, the proba- 
bility  of no crossovers  in Z l .  We regard 71, as the arbi- 
trary but fixed point in the preceding discussion, and 
put u = d l  and u = 0 in (2),  obtaining  the formula zl,, 
= 1 - F*(dl ), where F* is the c.d.5 corresponding to 
f* = p" (1 - F ) .  Similarly, = 1 - F * ( d 2 ) ,  zI1  = 1 
- F*(dl + d 2 ) ,  and zoo = 1. All of these expressions are 
easily computed as long as Fy: is tractable. 

We  now turn to n = 3 intervals and the calculation of 
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z = ( A quick run through all eight possibilities  re- 
veals that all but zlol can be obtained in the manner  just 
illustrated with n = 2. For example, zloo = 1 - P ( d 1  ), 
roll = 1 - P ( 4  + 4 ) ,  etc. It turns out that the calculation 
of zlol, in general requires summing a series  of  multiple 
integrals, and that the only known cases  in  which  these 
integrals simp19 into something tractable are variants on 
thinned Poisson  processes.  Let  us  see why. 

First we recall that zlol is the probability of no chias- 
mata in either 1, or 13; there may be  zero, one  or more 
in 12, where the  count is not  constrained.  Thus an initial 
reduction of zlol is  as  follows: 

m 

ZlOl = 2111 + <k,  
k= 1 

where zll l  is the probability of no chiasmata in Il U I2 
U I3 (= 1 - F* ( dl + 4 + &) ), and ck is the probability 
of k chiasmata in I2 and  none in Il or Is. We  now  give 
an expression for <k that, in general,  does not simplify, 
and we remark  that we know  of no substantially simpler 
alternative expressions in the  literature  on renewal pro- 
cesses. 

If there  are  to  be k 2 1 chiasmata in I,, we  may 
denote  the forward recurrence interval length from X I  

to the first event by yl , and the k subsequent interevent 
distances by p, y3, . . . , y k ,   y k + l .  Further we  may denote 
by yo the backward recurrence distance to  the first event 
to  the left of .Wl. With this notation we can readily 
check that  the probability ( k  is the ( k  + 2)-fold integral 
of the joint density of ( y o , y l ,  . . . , y k , y k + l )  over the  range 

y k + l  > 4 + &}. The  joint density of yo, . . . , y k + l  is the 
product 

{ Y O  > dl1 n { y l  + ' + y k  < 41 { y l  + ' + y k  + 

P"f*(YO + J l )  x n;:; f ( Y J >  
and so our assertion is demonstrated: zlol is an infinite 
sum of multiple integrals and will have a tractable ex- 
pression only when these sums and integrals simplify. 
For each n 2 3 there is one or  more G,. , .2, requiring 
such expressions, and so far it is only the class  of  chi- 
square renewal processes (ZHAO et d. 199513) and  a 
slightly more  general class termed Poisson-skip pro- 
cesses (H. ZHAO, K. LANCE and  T. P. SPEED, personal 
communication)  that  are known to yield  simplifica- 
tions. 


