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ABSTRACT 
The detection of genes that control  quantitative  characters  is  a  problem of great  interest  to  the genetic 

mapping  community.  Methods  for  locating  these  quantitative  trait  loci  (QTL)  relative  to  maps of genetic 
markers  are  now  widely used. This  paper  addresses  an  issue  common  to  all QTL  mapping methods, that 
of determining an  appropriate  thresholdvalue for declaring  significant QTL effects. An empirical method 
is described,  based on the concept of a  permutation  test, for estimating  threshold  values  that  are  tailored 
to  the  experimental data  at hand. The method is demonstrated  using two real data  sets  derived  from F2 
and  recombinant  inbred  plant  populations. An example  using  simulated  data from a backcross design 
illustrates  the effect of marker  density on threshold values. 

M ETHODOLOGICAL research on the problems of 
detecting and locating  quantitative trait loci 

(QTL)  has  received  considerable attention over the past 
several  years. A variety  of methods have been developed 
to  analyze  quantitative trait data (WELLER 1986,  1987; 
LANDER and BOTSTEIN  1989; HALEY and b o r r  1992; 
KNon and m y  1992; HALEY et al. 1994; &ONELL 

et al. 1992;J~~sEN  1993a,b;JmS~~ and STAM 1994; ZENG 

1993,1994). A problem  common  to  all of  these  methods 
is the difficulty  of determining appropriate significance 
thresholds (critical  values)  against  which  to compare 
test  statistics  (usually LOD scores or likelihood  ratios) 
for the purpose of detecting QTL. The source of  this 
difficulty  is  twofold.  First, there is the problem of de- 
termining (or approximating) the distribution of the 
test  statistic under an appropriate null  hypothesis.  In 
most  cases, the regularity  conditions that ensure an a s  
ymptotic  chi-square  distribution for the likelihood ratio 
test  statistic are not satisfied  (GHOSH and SEN 1985; 
HARTIGAN 1985;  FENG 1990). There are often additional 
problems due to  finite  sample sizes and distributional 
properties of the quantitative trait that might  cause one 
to doubt the reliability of  asymptotic approximations. 
The second  source of  difficulty  is the multiple  hypoth- 
esis testing that is implicit in the genome searches  used 
for locating QTL ( m y  1994; JANSEN 1993a,b; JANSEN 

and STAM 1994; ZENG 1993, 1994). A large number of 
tests  may  be carried out, many  of  which are not inde- 
pendent. The dependence structure of these  tests  is  dif- 
ficult  to  analyze  in  cases other than the extremes of  very 
dense or very sparse genetic maps.  Elegant  theoretical 
arguments have been presented (LANDER and BOTSTEIN 
1989) that address both of these  issues.  However,  they 
offer the user  formulas for threshold values that are un- 
fortunately  difficult  to  apply and are based on a number 
of assumptions that are not likely to be met  in  practice 
(LANDER and BOTSTEIN 1989). 
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The problem of determining appropriate threshold 
values  is made even more difficult  because there are 
many factors that can vary from experiment to  experi- 
ment and can  influence the distribution of the test sta- 
tistic.  These include, but are not limited to, the sample 
size, the genome size  of the organism under study, the 
genetic  map  density,  segregation  ratio  distortions, the 
proportion and pattern of  missing data, and the number 
and magnitude of segregating  QTL. Our goal  in  this 
work  is  to  provide researchers involved  in  QTL mapping 
projects with a simple and intuitive procedure for esti- 
mating a threshold value and thus detecting significant 
QTL  effects.  Any such procedure must  be  statistically 
sound and should  reflect,  to the greatest extent possible, 
the characteristics of each  particular experiment. In this 
paper, we describe a method based on the concept of 
permutation tests as first  proposed by FISHER (1935). It 
involves repeated “shuffling” of the quantitative  trait val- 
ues and the generation of a random sample of the test 
statistic  from  an appropriate null  distribution. The pro- 
cedure is  statistically  valid  when  used  in conjunction 
with likelihood or regression  based  test  statistics and for 
any distribution of the quantitative  trait.  Because our 
procedure is empirical,  based on the observed  marker 
and trait data, it will automatically  reflect the charac- 
teristics of the particular experiment to  which it is 
applied. 

Before proceeding to  describe our method, we  review 
the usual  “QTL  hypotheses” and discuss a handful of 
previous  studies on the QTL detection problem,  real- 
izing that by no means are we presenting a complete 
literary synopsis  of  this  field. 

There are three hypotheses  most  relevant  to the QTL 
detection problem (&on and HALEY 1992)  these  being 
(1) Ht: no QTL  is present; (2) Po: a QTL  is present but 
is not linked  to the marker(s) and (3) HA: a QTL  is 
present and is linked  to the marker(s). 
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It is usual but  not necessary to assume that, within 
classes defined by the  (unknown) QTL genotype, the 
quantitative trait is  normally distributed. Under  the null 
hypothesis Hh, the trait values should follow a single nor- 
mal distribution. Thus any  association  between the trait 
values and a marker (interval) in the genetic map will be 
due purely to chance effects. Under  the  null hypothesis 
@, the trait should follow a normal mixture distribution 
with mixing proportions  equal  to %. Again  any  associa- 
tions between the trait values and markers unlinked to 
the QTL are due to  chance.  Under  the alternative hy- 
pothesis HA, the trait should follow a normal mixture 
distribution with mixing proportions determined by the 
recombination  fraction  between the marker  (interval) and 
the QTL. In this  case,  real  associations  between the trait 
values and the marker(s) are expected (DOERGE 1993). 

The most widely used algorithm for QTL detection 
and mapping is that  implemented in the MAPMAKER/ 
QTL  software package (PATERSON et al. 1988; LINCOLN 
and LANDER 1992; LINCOLN et al. 1992) as first described 
by LANDER and BOTSTEIN (1989). Their  method is based 
on LOD scores (equivalent to log likelihood ratios) com- 
puted at regular incremental values throughout  the ge- 
nome. Although the null hypothesis assumed by 
MAPMAKER/QTL algorithm is HA, the null hypothesis 
of an unlinked QTL @ is  discussed in Appendix A4  of 
LANDER and BOTSTEIN (1989) as being more  appropriate 
in some cases. An eloquent  argument based on  an 
Orenstein-Uhlenbeck diffusion process is used to deter- 
mine  the distribution of the maximum LOD score (over 
the  entire  genome)  under  the null hypothesis. Propo- 
sition 2 along with its Corrigendum (LANDER and 
BOTSTEIN 1994) describes the calculation for  determin- 
ing  the threshold value taking account of the known 
chromosome number  and  the known genetic length of 
the organism. LANDER and BOTSTEIN (1989) suggest that 
a typical LOD threshold should be between 2 and 3, to 
ensure  an overall false  positive (type I error) rate for 
QTL detection of 5%. LANDER and BOTSTEIN (1989) also 
show  how to estimate threshold values  based upon simu- 
lated data. 

KNOTT and HALEY (1992) used simulations to study the 
distributional properties of likelihood ratio tests for 
QTL detection.  Their results suggest that  the chi-square 
approximation to the distribution of likelihood ratio test 
statistics is not reliable in many  cases and is at least ques- 
tionable in every  case. The problem of determining a 
significance threshold value for multiple nonindepen- 
dent tests is not addressed in detail, but  the  reader is 
cautioned to consider setting higher significance thresh- 
olds in this  case. In their conclusion & O n  and HALEY 
(1992) suggest that  further theoretical work  is needed 
in this area as no alternative other than simulation is 
presently available for setting significance thresholds. 

CARBONELL et al. (1992) note  that it is inappropriate 
to use standard chi-square approximations for  threshold 

values. They consider two different chi-square based 
thresholds and compare  them to determine which  gives 
“better” results. They also conclude that  more research 
is needed  to  determine  appropriate threshold values. 

ZENG (1993) presents a regression based method  that 
includes other markers as cofactors in a multiple regres- 
sion. He advocates the use of an approximate one de- 
gree of freedom chi-square threshold for his method 
when the sample size  is large, and  the  number of  evenly 
spaced markers is small.  Realizing that representative 
threshold values reflect the sample size, the  number of 
markers in the model and the size  of the marker interval, 
ZENC (1994) relies on a simulation study  to explore these 
issues in a genome of unevenly markers and small 
sample size.  For  small sample size, the  reader is cau- 
tioned as to the number of markers  allowed  in the model, 
since too many  fitted  markers  can  substantially  increase the 
threshold value of the test  statistic. To this point ZENG offers 
no effective  solution to the threshold problem other than 
to suggest  using computer simulation. 

Notably, computer simulation has been used as a 
means of estimating threshold values (LANDER and 
BOTSTEIN 1989). Unfortunately simulation based  tests 
are model dependent  and rely  heavily on the assump- 
tions from which the  data  are simulated. The validity  of 
parametric and  nonparametric based threshold values is 
detailed in the DISCUSSION. 

Other researchers (KNMP et al. 1990; JANSEN 1993b) 
have advocated the use of “conservative” threshold val- 
ues based on chi-square distributions with either one  or 
two degrees of freedom.  The  method  presented by 

JANSEN and STAM (1994) relies on weighted sum of 
squared residuals for the case of mixture models. Ad- 
mittedly, JANSEN and STAM (1994) state, “as an ad hoc 
approximation we used the chi-squared distribution 
with one degree of freedom, multiplied by the residual 
variance.” No justification is given for determining 
threshold values in this manner. 

The difficulties  in determining an appropriate asymp 
totic distribution are  not too surprising when one con- 
siders that  the most widely used hypothesis test  com- 
pares a mixture distribution under HA to a non-mixture 
distribution under H;. It is  well documented ( e .g . ,  
HARTIGAN 1985; GHOSH and SEN 1985) that  the usual as- 
ymptotic arguments do  not apply  in this case as the hy- 
potheses are  not properly nested. The fact remains that 
these hypotheses are of significant practical importance 
and thus we are highly motivated to study this problem 
further. 

METHODS 

Motivation: Data for quantitative trait analysis  consist 
of a set of marker genotypes measured on each indi- 
vidual together with phenotypic trait values  also  meas- 
ured  on each individual. To detect QTL  effects  in the 
genome, statistical  tests may be carried out  at each 
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marker and, if the markers are organized into a genetic 
map,  at regularly spaced increments in the intervals be- 
tween markers. We refer  to  the location at which a test 
statistic is computed as an analysis point.  In a single 
marker analysis, all  of the analysis points  are markers. If 
analysis points between markers are used, the analysis  is 
an  interval analysis. If there is a QTL effect  at a specific 
location in the  genome  there will be  an association be- 
tween the trait values and the analysis points linked to 
that location. This association may be  detected by t tests 
or ANOVA ( SCHEW 1959) in a single marker analysis or 
by likelihood ratios in an interval analysis. If there is no 
QTL effect  linked  to a marker, any associations between 
the trait values and  the  marker  are likely to be weak and 
attributable  to  chance effects. Thus  the key to  detecting 
QTL effects is the  detection of significant associations 
between the phenotypic trait values and the markers 
and/or intervals in a genetic  map. 

Our approach  to  the estimation of a significance 
threshold is based upon this simple observation of 
marker-phenotype association. It  can  be  applied  to 
single marker or interval mapping  approaches using any 
test statistic  with  power to detect associations. If the  data 
indicate  that  there  are QTL effects, we can effectively 
destroy any association between the trait values and  the 
analysis points linked to  the QTL by randomly shuffling 
the trait values, i . e . ,  by reassigning each trait value to a 
new individual while retaining  the individual’s genetic 
map. On the  other  hand, if there  are no QTL effects 
linked to specific regions of the  genome, randomly shuf- 
fling the trait values across individuals will not alter  the 
distribution of the test statistic. Any associations should 
still be small and attributable  to  chance. If  we compute 
the value  of an  appropriate test statistic at each analysis 
point in the shuffled data sets, we are essentially  sam- 
pling from a null distribution corresponding  to  the hy- 
pothesis of no associations between the trait values and 
the genetic maps. As the genetic maps and trait values 
are  not altered by the shuffling procedure, this distri- 
bution will automatically take into  account  the particu- 
lar characteristics of the  experiment  at  hand. 

Threshold estimation: Individuals in the  experiment 
are  indexed from 1 to n. The data  are shuffled by com- 
puting a random  permutation of the indices 1, . . ., n 
(FISHER 1935) and assigning the  ith trait value to the 
individual whose index is  given  by the  ith  element of the 
permutation. The shuffled data  are  then analyzed for 
QTL  effects. The resulting test statistics at each analysis 
point  are  stored  and  the  entire  procedure (shuffling and 
analysis) is repeated N times.  At the  end of this process 
we  will have stored  the results of  QTL analyses on N 
shuffled data sets.  Two  types  of threshold values can be 
estimated from these results. The first is a comparison- 
wise threshold  that can be estimated separately for each 
analysis point  and provides a 100( 1 - a) % critical value 
for  the test at that  point. One should realize that since 

the same sample of permutations is used for each analy- 
sis point in a specific repetition,  the comparisonwise 
threshold values will be  correlated. In  order to eliminate 
this correlation one could consider doing a permutation 
of the trait values at each analysis point,  but this soon 
becomes computationally undesirable. The second type 
of critical value is an experimentwise threshold  that pro- 
vides an overall 100( 1 - a) % critical value that is  valid 
simultaneously for all  analysis points. Results  of the QTL 
analysis on  the original data can be compared to these 
critical values to determine statistical significance and 
thus to detect QTL  effects. 

A comparisonwise critical value is obtained by order- 
ing  the N test  statistics obtained  at each analysis point in 
the  map and finding  their 100( 1 - a) percentile. For 
example, if a comparisonwise significance level  of a = 
0.05 is desired and N = 1000, the 950th value of the 
ordered test statistics will be our estimate of the com- 
parisonwise critical value at  that analysis point. Using 
this critical value to define a test controls the type I error 
rate at that  point to be a or less. One should keep in 
mind  that many individual tests may be computed  and 
each presents a new opportunity to make a type I error. 
Thus if  we use comparisonwise critical values, the type 
I error  rate over the  entire  genome may be  much  higher 
than a. 

The experimentwise critical value may be obtained by 
first finding  the maximum test statistic  over all analysis 
points for each of the N shuffled analyses. These values 
are  then  ordered  and  their  100( 1 - a) percentile is our 
estimated experimentwise critical value. The experi- 
mentwise critical value  is used to detect  the presence of 
a QTL somewhere in the  genome while controlling  the 
overall  type I error rate to be a or less. The experiment- 
wise critical value will necessarily be  higher  than  the 
comparisonwise  values, thus  the price for controlling 
the type I error  rate over the  entire  genome is some loss 
of  power to detect QTL  effects. 

An obvious question at this point is  “How large should 
N be?” We recognize that this procedure may be mod- 
erately expensive in computer time. Larger values  of N 
will provide more precise estimates of the critical values. 
Thus  there is a tradeoff here. Based on  our limited ex- 
perience with this procedure, we recommend  that at 
least 1000 shuffles be used for estimating critical values 
at a = 0.05. For more  extreme critical values such as 
a = 0.01,  as  many as 10,000 shuffles may be  needed to 
obtain stable estimates. 

Justification: The simple nature of the shuffling pro- 
cedure seems almost too good to be  true,  but its use is 
supported by  well established statistical  results. The pro- 
cedure we have described is an  approximate  permuta- 
tion test. Permutation tests  were  first proposed by FISHER 
(1935). A summary of the theory of permutation tests  as 
well  as references to the original literature can be  found 
in LEHMANN (1986, pp. 230-245). An introduction  to  the 
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theory of permutation testing is provided by &OD 
(1994). 

A permutation test in the simplest case  is used to de- 
tect a location shift in data  that are divided into mo sets 
of observations Z = ( X , ,  . . . , X,, Y,, . . . , Y, ) .  The test 
is performed by enumerating all permutations of the 
observed data z' E S( z) (where S (  x )  denotes  the set of 
all permutations of z) and ordering  them by the values 
of a function h(z ' )  which is usually the likelihood of the 
data under  an alternative hypothesis. The null hypoth- 
esis  of no shift in location is rejected if the value  of the 
function h ( z )  based on  the observed data is among  the 
k largest values  of h(z ' )  based on  the  permuted  data 
where k = [an!], and [x] denotes  the greatest integer 
not  greater  than x. In practice the  number of permu- 
tations is  usually too large to enumerate. However, one 
can compute  an approximate permutation test by gen- 
erating a random sample from the set of  all permuta- 
tions of the  data. For a random sample of  size N, the 
estimated critical value is the kth largest value  of h(z ' )  
where k = l a w .  

Consider testing for QTL effects at a single marker 
locus in a backcross population with a single segregating 
QTL. Let 

{ 
i 

0 non-recurrent  parental allele 

Q i  = 1 non-recurrent  parental allele 
is absent at  the QTL 

is present at the QTL 

and 

0 non-recurrent  parental allele 

1 non-recurrent  parental allele 
is absent  at  the marker 

is present at the  marker 

Mi = 

for individuals i = 1, . . . , n. Let Yi be  the phenotypic 
trait value of the  ith individual. We  will assume the trait 
value  is a random variable with (conditional) density 
function p, ,  p( y,O) = f( y ) within the class  of individuals 
defined by Q. = 0 and with density function p, ,  4( y, 1) 
= f( y - A) within the class  of individuals defined by 
Q = 1. Thus  the effect of the  non-recurrent  parental 
allele is to shift the density function of the trait by an 
amount A. We  will assume, without loss  of generality, 
that A > 0. Of course, the QTL genotype cannot be di- 
rectly observed. For a given marker linked to the QTL 
with recombination fraction r (0 5 r 5 %), the condi- 
tional densities for the trait values are 

p,, M( y, m) = ~ ~ ( 1  - 4""fC y) + 6 - V  - 4"f( y - 4 .  (1) 

The mixture form of the density arises because the true 
QTL state is unknown. The essential points for our justi- 
fication are (1) when A > 0 and r< 95, PYlM( y,l) is stochas- 
tically larger than p,,,( y,O) and (2) when A = 0 (corre- 
sponding to Hi) or when r = M (corresponding to Po), the 

two conditional density functions, p,, M (  y,O) and p,, M (  y,l) , 
are equal. 

Now let 

n 

Nym) = n P,, d y , ,  mil (2) 
I= 1 

wheref( ) is taken to be a normal density function, y = 
y,, . . . , y, and m = m,, . . . , m,. Thus h( ) is the likeli- 
hood  function under  the alternative hypothesis HA as- 
suming the trait values are normally distributed within 
QTL genotype classes. Note that because h( ) is used 
only to order  the permutations, any monotone trans- 
formation of h( ) such as the log likelihood, log likeli- 
hood ratio or LOD score will yield an equivalent test. 
With this choice of h( ) and points (1) and (2) above, 
the  conditions of Lemma 3 in  LEHMANN (1986, p. 234) 
are satisfied. It follows that  the  permutation test is un- 
biased. That is, it has a type I error  rate  equal to a under 
either of the null hypotheses Hi or  and it has power 
greater  than a for any alternative satisfying point (1) 
above. Furthermore, in the case where the  true distri- 
bution of the phenotypic trait within the QTL genotype 
classes  is normal,  the  permutation test is most  powerful. 

We note  that  the  permutation test applied to a single 
marker is the non-parametric analog of a t test. Although 
the t test has proven to be robust, the conditions for a 
t test are  not satisfied in this case (DOERCE 1993) and  the 
permutation test may be  more  appropriate. When the 
trait distribution is not normal within  QTL genotype 
classes, the  permutation test is still unbiased. In this case, 
a more powerful test could be derived by introducing 
the  true density function f( ) for  the trait values into 
Equations 1 and 2. However, we note  that  the  permu- 
tation test is robust to distributional assumptions and 
when applied with a normal density function f( ) will 
generally lose  very little power (Box and ANDERSON 

1955). 
This justification of the  permutation test can be ex- 

tended to analysis points within an interval. The mix- 
tures in (1) are slightly more complex (DOERGE 1993) 
but  the stochastic ordering of the densities will still hold. 
In the case  of F, and  other experimental crosses, the 
numbers of QTL genotype classes may be increased 
again making the mixtures in (1) more complex. The 
permutation test will still be unbiased for any form of the 
additive and dominance effects.  However, because there 
are  more  than two marker classes, simple one-sided tests 
of location shift cannot  be  constructed and most 
powerful unbiased tests do  not exist (LEHMANN 1986). 
To apply the  permutation test to the whole genome 
(experimentwise threshold), we consider a new function 
h( ) which is the maximum of the likelihood over  all 
analysis points. The conditions of Lemma 3 (LEHMANN 
1986) are also  satisfied by this function. 
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TABLE 1 

Estimated threshold values for MAPMAKER/QTL sample data 

1 - CY Experimentwise  Comparisonwise”  Critical  valueb 

0.90 2.07 1.01 0.5885 
0.95 2.51 1.34  0.8339 
0.99  3.24 2.13 1.4397 

Values  based on LOD scores  from 1000 permutations of the origi- 

” Average  across  all  analysis points. 
b 

nal  data. 

M ~oglLlex:l,. 

EXAMPLES 

MAPMAKER sample data: We have applied  the per- 
mutation test to  the F, data  that  are  distributed with 
MAPMAKER l . l b  software  (PATERSON et al. 1988; 
LINCOLN and LANDER 1992; LINCOLN et al. 1992). The file 
sample.raw contains phenotypic trait data on 333 indi- 
viduals and their genotypes at 12 marker loci. We used 
the linkage groups and  map distances as established by 
the MAPMAKER/EXP 3.0 manual (LANDER and GREEN 
1987; LINCOLN and LANDER 1992; LINCOLN et al. 1992). 
The trait values were transformed by taking their loga- 
rithm for purposes of comparison with the sample analy- 
sis. (Transformation to obtain “normality” is not neces- 
sarily correct or even possible in some cases  as the 
expected distribution of a trait in  the presence of a QTL 
effect is a mixture distribution.) The trait values in sam- 
ple.raw were shuffled and  the usual QTL  analysis was 
performed using MAPMAKER/QTL. This process was 
repeated 1000 times and  the LOD scores at each 2 c M  
increment analysis point were stored. To obtain com- 
parisonwise threshold values, the 1000 LOD scores at 
each analysis point were sorted and the 100( 1 - a) per- 
centile value was located. The results are summarized in 
Table 1 and in Figure 1. We see in this experiment  that 
the comparisonwise threshold values are fairly constant 
across the two linkage groups. This  need not be the case. 
Fluctuations in these values (shown in Figure 1)  are  due 
in part to the sampling of the  permutation set. They are 
larger  for  the  more  extreme critical values (e.g. ,  1 - 
a = 0.99) that  are not as precisely estimated. Also note 
that  the 95% LOD score threshold values are on average 
about 1.34. This LOD score can be rescaled to a likeli- 
hood  ratio test statistic (divide by log,,( e)/2 = 0.2171). 
The result 6.17 is  slightly greater  than  the chi-square 
critical value on 2 d.f., = 5.99. To obtain the ex- 
perimentwise threshold, we first identifjr the maximum 
peak for each of the 1000 QTL  analyses and  then  sort 
these values to  obtain  the l O O ( 1  - a) percentile (see 
Table 1 ) .  The peak LOD score obtained on  the original 
(not shuffled) data is 8.926, clearly indicating a signifi- 
cant QTL effect. There is a notable difference between 
the  permutation based threshold values and  the critical 
values based upon a chi-square distribution with a single 
degree of freedom  (Table 1 ) .  A histogram of the 1000 
maximum LOD scores is shown in Figure 2. The distri- 

bution is seen to  be  right skewed  as  is  typical for distri- 
butions of extreme values. 

Single  marker  analysis of recombinant  inbred data: 
In this example, we consider a recombinant  inbred (F,) 
population of rice derived from a cross between C039 
(maternal)  and Moroberekan. A total of 203 recombi- 
nant  inbred lines were scored at 147 molecular markers. 
The quantitative trait of interest is root thickness (in 
micrometers) (M. C. CHAMPOUX, G. WANG, S. SARKARUNG, 
D. J. MACKILL, J. C.  T TO OLE, N. HUANG and S. R. 
MCCOUCH, UNPUBLISHED RESULTS). 

Application of the  permutation test to these data il- 
lustrates two points. First, it was noticed that  the segre- 
gation ratios in this population  are severely  skewed and 
the experimentwise threshold values for QTL detection 
should reflect this peculiarity of the data. Second, in- 
terval mapping software for  the analysis  of RI popula- 
tions is not readily available. Therefore, we have carried 
out a single marker analysis using a t test at each analysis 
point  (marker). We note  that  the assumptions of a t test 
are  not satisfied in this case. 

The original data were permuted 1000 times and  the 
t statistics at  each of the 147 markers were recorded. 
Comparisonwise thresholds were estimated for each of 
these tests (not shown). The degrees of freedom  for 
each t test vary slightly from marker to marker due to 
missing data. The averages  of  all 147 comparisonwise 
thresholds are summarized in Table 2. Note that they 
compare very well  with the  corresponding t distribution 
critical values. Experimentwise thresholds are of more 
interest in this example. The maximum t test statistic 
(across all markers) from each of the 1000 permutations 
were used to obtain  the experimentwise threshold. Re- 
sults are summarized in Table 2. The maximum t test 
statistic for  the original data was 9.0350, indicating a 
significant QTL effect in these data. 

To  determine if 1000 permutations of the  data  are 
sufficient to estimate experimentwise thresholds, we re- 
peated  the  entire  experiment 10 times. Standard  errors 
of 0.028, 0.020 and 0.061 for  the estimated threshold 
values were obtained at a = 0.10,0.05 and 0.01, respec- 
tively. This suggests that 1000 permutations were ad- 
equate  for estimating critical thresholds at a = 0.10 and 
0.05. More extreme type I error rates such as a = 0.01 
may require larger numbers of permutations to yield 
threshold estimates accurate to two decimals. 

A simulated  example: One  hundred backcross indi- 
viduals  were simulated in a genome  containing  four 
chromosomes of 100 cM each. Chromosomes Z and ZZZ 
were generated with 50 randomly placed markers each 
in a high density framework. Chromosomes ZZ and ZV 
were generated with a low density framework of 10 ran- 
domly placed markers each. The  true genetic maps were 
used in subsequent QTL analysis. A QTL with additive 
effect 0.75 (4 = 1.0) was simulated at 44.4 cM from the 
left end of chromosome I.  A second QTL of effect 1.0 
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FIGURE 2.-Histogram of  maximum LOD scores for 
MAF"AKER/QTL  sample data.  The maximum LOD score 
across all analysis points was computed  for  each of 1000 per- 
mutations of the original data. Percentiles  of  this  distribution 
are used to define experimentwise threshold values. 

(a2 = 1.0) was simulated at 61.6 cM from the left end 
of chromosome II. 

Each of the 1000 permuted  data sets was analyzed in 
MAI"AKER/QTL  under  the backcross data type.  Com- 
parisonwise thresholds  for the LOD scores are shown in 
Figure 3 and  the average values are summarized in Table 
3. Note that  the comparisonwise values are fairly con- 
stant  throughout  the  entire  genome (Figure 3),  and 
agree fairly well  with the  threshold values based upon  a 

FIGURE I.-QTL analysis  of 
MAPMAKER/QTL sample  data. 
LOD scores from analysis of the 
original data (.....) are plotted at 
each analysis point. Comparisonwise 
(-) and experimentwise (- - - -) 
threshold values are shown for level 
cy = 0.01 (top), 0.05 (middle)  and 
0.10 (bottom) tests. 

TABLE 2 

Estimated  threshold values for root thickness data 

1 - a Experimentwise  Comparisonwise' 1 critical value 

0.90 3.40 1.65 1.64 
0.95 3.60 1.98 1.96 
0.99 3.99 2.60 2.58 

Values based on f statistics from 1000 permutations of the original 

" Average  across all analysis points. 
data. 

chi-square distribution with a single degree of freedom 
(Table 3). To illustrate the effect of marker density on 
experimentwise thresholds, we  have computed  separate 
thresholds for each linkage group. These "linkage 
groupwise" thresholds  correspond to four independent 
tests  of QTL effects on each chromosome (and  thus  four 
opportunities to make a type I error). They are shown 
in Figure 3 and summarized in Table 3. For linkage 
groups I1 and IV with  low density marker frameworks, 
the threshold values are lower. This point illustrates that 
the estimated threshold values do indeed reflect the 
characteristics of the  experiment  (chromosome)  to 
which they are applied. We note also that  the thresholds 
for chromosomes I and II  that contain QTL are essen- 
tially identical to thresholds for chromosomes IIIand N 
that  do  not contain QTL. This last point illustrates that 
the shuffling effectively breaks up any  association  of 
QTL effects and markers. 

DISCUSSION 

Permutation tests provide a robust and powerful 
method of testing statistical hypotheses that is intuitive 
and easy to apply in practice. Alternative methods of 
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Each  linkage groups is 100 cM in length. Link- 
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groups 111 and IV do not. Linkage groups I and 
111 are mapped at high  density (50 markers 
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from analysis of the original data (*....) are plot- 
ted at each analysis point. Comparisonwise 
(-) and linkage  groupwise (- - - -) thresh- 
old values are shown for level a = 0.01 (top), 
0.05 (middle) and 0.10 (bottom) tests. 
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TABLE 3 

Estimated threshold values for the simulated backcross data 

Experimentwise  Comparisonwise Critical value 

1-Cu LGlb LC2  LG3  LG4 TGC LG1  LG2 LG3 LG4 TG % 10g,oex:1, 

0.90 1.45 1.29 1.48 1.31 1.98 0.58 0.61 0.59 0.61 0.60 0.5885 
0.95 1.83 1.57 1.84 1.59 2.27 0.84 0.87 0.85 0.86 0.85 0.8339 
0.99 2.44 2.21 2.51 2.19 2.99 1.48 1.43 1.51 1.45 1.48 1.4397 

Values  based on LOD scores from 1000 permutations of the original data. 
a Average  across  all analysis points in the linkage group. 

LG = linkage group. 
'TG = total genome. 

constructing tests are available but  none seem to offer 
the  broad advantages of permutation tests. 

Parametric tests (e .g . ,  t test) based on a sampling 
model are often most powerful when the  data  are known 
to follow a particular  distribution. In some cases exact 
distributions for  the test statistic can  be derived from  the 
model. In other cases large sample (asymptotic) a p  
proximations to the distribution can be derived. We 
have noted above the difficulties with these approaches 
when applied  to  the QTL hypotheses. Parametric tests 
can also be developed on  the basis  of simulated data 
(BIRNBAUM 1974). However, simulation based  tests are 
highly dependent  on  the model assumptions for  their 
validity. Permutation tests, on  the  other  hand,  are valid 
under very mild conditions (exchangeability under H,) 
and thus provide protection against failures of the 
model assumptions. They are  at least as powerful as the 
best unbiased parametric tests when the model assump- 
tions hold. 

The nonparametric  bootstrap  procedure (EFRON 
1979) could also be used to construct a test of  QTL  hy- 
potheses at  an analysis point by resampling with replace- 
ment  the phenotypes within each  marker class.  Boot- 

strap tests in this case are asymptotically equivalent to 
permutations tests.  However in finite samples, the boot- 
strap test cannot be guaranteed  to provide a conservative 
type I error  rate  nor can it  be  guaranteed  to  be most 
powerful. It is not clear how one would apply the boot- 
strap  procedure to construct a global test for QTL effects 
analogous to permutation tests based on experiment- 
wise thresholds. 

We have presented a method of estimating threshold 
values for declaring significant QTL effects in a genome 
or at any point within a genome by the application of a 
permutation test. The test is  valid for any continuously 
distributed trait, i .  e . ,  it will  have the  correct type I error 
level and will have  power to  detect QTL  effects under  the 
alternative hypothesis HA' The threshold values ob- 
tained through this method  are limited specifically to 
the  data set on which the  permutations  are  performed. 
However, since the  method can be  automated, one can 
easily generate threshold values for any data set. As an 
example of the time required  for  computing  threshold 
values, our fist example  took  approximately 23 hr of  CPU 
time to generate 1000  QTL  analyses  of permuted data 
on a SPARC  IPX Workstation. This is a relatively  small 
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investment compared to the many hours required to xore 
and genotype  individuals in a typical QTL experiment. 

Generalizations of the  permutation test to  the  prob- 
lem of detecting multiple QTL effects may be possible. 
LEHMANN (1986) notes  that in the case  of a heteroge- 
neous  population,  the power of a permutation test can 
often  be improved by stratifying the  population accord- 
ing  to factors unrelated  to  the  treatment of interest but 
known to affect the  outcome (analogous to unlinked 
QTL).  In  the case  of QTL detection,  the presence of a 
major gene(s) affecting the trait of interest may be 
known a priori. The population  can  then  be divided into 
classes based on  the presence/absence of the major 
gene(s)  (or tightly linked marker) and  the trait values 
permuted within these classes. This  procedure could sig- 
nificantly increase the power for detecting  unlinked 
QTL effects secondary to the major gene. We caution 
potential users of this approach  that if the classes are 
determined  in light of the  data from the  present ex- 
periment,  the type I error level  of the  procedure  cannot 
be  guaranteed. As the level of stratification increases or 
if the stratification is not effective  in reducing  the vari- 
ance of the trait, the loss  of  power due to stratifcation 
may offset  any advantages of conditioning. 

The problem of detecting and locating multiple QTL 
effects has been most recently addressed by JANSEN 

(1993a,b), JANSEN and STAM (1994), HALEY et al. (1994), 
and ZENC (1993, 1994). Each of these works makes us 
increasingly aware  of the growing importance of deter- 
mining threshold values against which to compare test 
statistics.JANSEN and STAM (1994) state with regard to an 
overall significance value, “Many  tests are  performed 
when moving along  the genetic map. An overall signifi- 
cance level cannot  be  guaranteed due to the lack  of 
knowledge about  the statistical behavior of the  (inter- 
dependent) tests.” Similarly, HALEY et al. (1994) suggest 
probing  the  null hypothesis distribution using Monte 
Carlo simulation for the  purpose of getting  at  the dis- 
tribution of their test statistic under the null hypothesis 
within the setting of multiple correlated test.  At first 
glance, it appears  that HALEY et al. might be  doing a 
permutation test, but this is not the case.  At each Monte 
Carlo simulation, they are  generating new phenotypic 
data (not permuting  the observed data).  Indeed, this 
suggestion will supply threshold values, but since the 
phenotypic data  are being constructed,  the particulari- 
ties of the  experimental situation such as segregation 
distortion and missing data may be lost and the resulting 
thresholds  are highly model  dependent. Lastly, ZENC 
(1993) asks in reference to his multiple regression 
method using cofactors, “since it is a multiple test and 
search problem  (for multiple locations), what would be 
an  appropriate significance value  of the test  statistic 
given a data  set?” Clearly further work on obtaining 
threshold values is needed in order to answer these 
concerns. The permutation test offers the  mapping 
community an intuitive method for estimating thresh- 

old values  which accurately reflect the specifics  of an 
experimental situation. The power  of the  permutation 
test is optimized when the  function h( ) is the  true like- 
lihood  function for the  data.  It will be of some interest 
to compare  the use of normal mixture likelihoods to 
other mixture distributions in this context. Further work 
is needing on the problems of modeling QTL effects, 
especially  with regard to the multiple QTL detection 
problem. The  reader will note  that  important problems 
of locating QTL and of estimating model parameters are 
not addressed in the  present work. 

In summary, the  permutation test provides an easy to 
use method  for estimating threshold values that is sta- 
tistically sound,  robust  to  departures from standard as- 
sumptions and is tailored to  the  experiment  at  hand. 
While the  permutation test has been  presented  here in 
conjunction with  MAPMAKER/QTL, it is completely 
feasible to use the  permutation test with  any  QTL map- 
ping procedure  including simple linear regression, mul- 
tiple regression and multiple regression with cofactors. 
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