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SUMMARY

‘We present in this paper general formulas for deriving the maximum likelihood estimates and the
asymptotic variance—covariance matrix of the positions and effects of quantitative trait loci (QTLs)
in a finite normal mixture model when the EM algorithm is used for mapping QTLs. The general
formulas are based on two matrices D and Q, where D is the genetic design matrix, characterizing
the genetic effects of the QTLs, and Q is the conditional probability matrix of QTL genotypes
given flanking marker genotypes, containing the information on QTL positions. With the general
formulas, it is relatively easy to extend QTL mapping analysis to using multiple marker intervals
simultaneously for mapping multiple QTLs, for analyzing QTL epistasis, and for estimating the
heritability of quantitative traits. Simulations were performed to evaluate the performance of the
estimates of the asymptotic variances of QTL positions and effects.

1. Introduction

With the rapid advances in molecular biology, it has become possible to gain fine-scale genetic
maps for various organisms by determining the genomic positions of a number of genetic markers
(RFLP, isozymes, RAPDs, AFLP, VNTRs, etc.) and to obtain a complete classification of marker
genotypes by using codominant markers. These advances greatly facilitate the mapping and analysis
of individual quantitative trait loci (QTLs).

Thoday (1960) first proposed the idea of using two markers to bracket a region for testing
QTLs. Lander and Botstein (1989) implemented a similar, but much improved, method to use two
adjacent markers to test for the existence of a QTL in the interval by performing a likelihood
ratio test (LRT) at every position in the interval. This is termed interval mapping (IM). The
identification of QTLs by IM has been reported in tomato (Paterson et al., 1991), maize (Stuber et
al., 1992), pig (Andersson et al., 1994), and forest trees (Bradshaw and Stettler, 1995). However,
IM can bias identification and estimation of QTLs when multiple QTLs are located in the same
linkage group (Lander and Botstein, 1989; Haley and Knott, 1992; Jansen, 1993; Zeng, 1994). It is
also not efficient to use only two markers at a time for mapping analysis. In view of these problems,
QTL mapping combining IM with multiple marker regression analysis is proposed (Jansen, 1993;
Zeng, 1993). Zeng (1994) named this combination composite interval mapping (CIM). A great
improvement in identification of QTLs by CIM has been reported in mice (Dragani et al., 1995)
and in Drosophila (Liu et al., 1996).

CIM avoids the use of multiple marker intervals to deal with the problems of mapping multiple
QTLs by conditioning a test for a QTL on some linked or unlinked markers that diffuse the effects
of other potential QTLs. Ideally, we would like to generalize this analysis to using multiple marker
intervals simultaneouly to solve the problem of multiple QTLs, either by a multidimensional search
for multiple QTLs or by a one-dimensional search for a QTL in one interval conditioning on the
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identified QTLs in other intervals. We are often restricted to using only one marker interval at
a time because of the lack of a systematic formulation for deriving the maximum likelihood esti-
mates (MLEs) for the finite normal mixture model when an arbitrary number of intervals are used.
Furthermore, most of the current QTL mapping methods, like IM and CIM, provide only point
estimates of QTL positions and effects. It is often of importance to know the asymptotic variance—
covariance matrix of the estimates. Darvasi et al. (1993) derived the MLEs and the asymptotic
variance—covariance matrix of QTL position and effects for IM using the Newton—Raphson method.
We present general formulas for deriving the MLEs and the asymptotic variance-covariance matrix
using the expectation maximization (EM) algorithm (Dempster, Laird, and Rubin, 1977; Meng,
1993, 1994). The reasons for using the EM algorithm are that it is easily implemented and is nu-
merically stable (Meng and Rubin, 1991), especially when multiple marker intervals are considered
simultaneously. With the general formulas, it is straightforward to fit multiple putative QTLs in the
model to improve the power and precision of mapping, to analyze QTL epistasis, and to estimate
the heritability of quantitative traits. Here, we use an Fy population as an example to explain the
general formulas and then apply the general formulas to a backcross population for a simulation
study of the performance of the asymptotic variances of QTL positions and effects.

2. Experimental Populations

We consider populations derived from a cross between two parental inbred lines P; and Ps, differing
substantially in a quantitative trait of interest. Let loci M, with alleles M and m, and N, with alleles
N and n, denote two flanking markers for an interval where a putative QTL is being tested. A
cross between two parents P; and P, is performed to produce an F; population. The F; progeny
are all heterozygotes with the same genotype M N/mn. If the F; individuals are backcrossed to
P or P, it produces a backcross population. There are four possible marker genotypes in the
backcross population (Table 1). If the F} individuals are selfed or intermated, it produces an F»
population. There are nine observable marker genotypes in the Fy population (Table 2). Let the
unobserved QTL locus Q with alleles @ and g be located in the interval flanked by markers M and N.
The distribution of unobserved QTL genotypes can be inferred from the observed flanking marker
genotypes according to the recombination frequencies between them. To infer the distribution of
QTL genotype, we assume that there is no crossover interference and also that double recombination
events within the interval are very rare and can be ignored to simplify the analysis. The conditional
probabilities of the QTL genotypes given marker genotypes are given in Table 1 for the backcross
population and in Table 2 for the F5 population. We extract the conditional probabilities in Tables
1 or 2 to form a matrix Q for each specific population.

3. Genetic Model

Consider a QTL in the F5 population in which the frequencies of genotypes QQ, Qq, and gq are
1/4, 1/2, and 1/4, respectively. The genetic model for a QTL

G 1 1 -1/2 a
G = G1:|:{1:l,u+[0 I/Q:I l:d]:13x1u+DE (1)
Go 1 -1 -1/2
Table 1
Conditional probabilities of a putative QTL given the
flanking marker genotypes for a backcross population
Marker Expected QTL genotype
genotype frequency QA Qq
MN/MN (1—rpynN)/2 1 0
MN/Mn TMN/2 1-p P
]\/IN/mN T]\/IN/2 p l—p
MN/mn (1—rypn)/2 0 1

p = rprQ/r, where 7@ is the recombination fraction between
the left marker M and the putative QTL and r is the recombination
fraction between the two flanking markers M and N. The possibility
of a double recombination event in the interval is ignored.
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Table 2
Conditional probabilities of a putative QTL given the
flanking marker genotypes for an Fa population

QTL genotype

Marker Expected

genotype frequency QQ Qq qq
MN/MN a-n? 1 0
MN/Mn rd-r) 1-p p 0
Mn/Mn 5 (1-p)? 2p(1 - p) p?
MN/mN rd=r) p 1-p 0
MN/mn or Mn/mN % + g ep(l —p) 1—2¢cp(1 —p) cp(l—p)
Mn/mn LIQ_T—) 0 1-p P
mN/mN - p? 2p(1 — p) (1-p)?
mN/mn T(l—gr) 0 P 1-p
mn/mn (l—jiﬁ 0 0 1

P =r7rMQ/TMN, Where 777 is the recombination fraction between the left marker M and the putative
QTL and 77 v is the recombination fraction between the two flanking markers M and N. ¢ = 7‘12\4N/[7‘12\4N +
(1 — rpsn)2]. The possibility of a double recombination event in the interval is ignored.

was proposed to model the relation between a genotypic value G and the genetic parameters u, a
and d. G2, G1, and Gg are the genotypic values of genotypes QQ, Qg, and gq. The unique solutions
of the genetic parameters in terms of genotypic values and frequencies are

Gy Gi1 Gy G2 -Gy _2G1 - G2 -Gy
1 5 7 a—————2 , and d———2 .

Therefore, the genetic parameter p is the mean and a and d denote the additive and dominance
effects of QTL in the F» populaton, respectively. We call D the genetic design matrix. The first and
second columns of D, denoted by D; and Do, represent the status of the additive and dominance
parameters of the three different genotypes.

4. Statistical Model for QTL mapping

We assume no epistasis between QTLs, no interference in crossing over, and only one QTL in
the testing interval. The analysis of QTL epistasis using this approach will be discussed later.
QTL mapping data consist of two parts, y; (j = 1,...,n) for the quantitative trait value and X;
(j = 1,...,n) for the genetic markers and other explanatory variables, for example sex or diet.
A CIM statistical model based on the genetic model for testing a QTL in a marker interval is
proposed as

y; = azj +dzj + X;8+¢j, (2)

where

if the QTL is Qq

N =

1 if the QTL is QQ
x; = {O if the QTL is Qq and z; = 1

—1 if the QTL is qq ~5 otherwise;
y; is the quantitative trait value of the jth individual; a and d are the additive and dominance
effects, respectively, of the putative QTL; X, a subset of X;, may contain some chosen markers
and other expanatory variables; 3 is the partial regression coefficient vector including the mean u;
and ¢; is a random error. We assume ¢; ~ N(0, 02). The advantages of using X; in QTL mapping
have been discussed by Zeng (1993, 1994). Basically, it could control for the confounding effect of
linked QTLs and reduce the residual variance in the analysis.
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5. Likelihood of the Statistical Model
Given the data with n individuals, the likelihood function for 8 = (p, a,d, 3, 02) is

L(O]Y,X) H [Zpﬂqﬁ (B ”“)} , (3)

where ¢(:) is a standard normal probability density function, pj1 = a—d/2+X;8, pj = d/2+X;8,
and pj3 = —a—d/2+ X; 3. Statistically, this is a normal mixture model (Titterington, Smith, and
Makov, 1985). The density of each individual is a mixture of three possible normal densities with
different means and mixing proportions. The mixing proportions p;;’s, which are functions of the
QTL position parameter p, are conditional probabilities of QTL genotypes given marker genotypes.
They are given in Tables 1 and 2 for backcross and F» populations. To obtain the MLEs of the
likelihood, we use the EM algorithm, treating the normal mixture model as an incomplete-data
problem.

6. Hypothesis Testing

In QTL mapping, we test whether there is a QTL at a given position within a marker interval. The
hypotheses are

Ho: a=0and d =0 (there is no QTL at that position),
H;: at least one of them is not 0 (there is a QTL at that position).

To test the hypothesis, we use an LRT statistic —2log[supg, L(6 | Y, X)/supg L(6 | Y, X)], where
©p and O are the restricted and unrestricted parameter spaces. Note that the threshold value to
reject the null hypothesis can’t be simply chosen from a x? distribution because of the violation of
regularity conditions of asymptotic theory under Ho (McLachlan, 1987; Thode, Finch, and Mendell,
1988; Feng and McCulloch, 1994). Also, Lander and Botstein (1989) and Zeng (1994) both suggested
that the number and size of intervals should be considered in determining the threshold value since
multiple tests are performed in mapping. The hypotheses are usually tested at every position of an
interval and for all intervals of the genome to produce a continuous LRT statistic profile. At every
position, the position parameter p can be predetermined and only a, d, 3, and o2 are involved in
estimation and testing. If the tests are significant in a chromosome region, the position with the
largest LRT statistic is inferred to be the estlmate of the QTL posmon p, and the MLEs at this
pos1t10n are the estimates of a, d, 8, and o>

7. General Formulas for Obtaining the MLEs and the Asymptotic Variance—Covariance
Matrix

The EM algorithm has been used to obtain MLEs in several studies of QTL mapping analyses
(Lander and Botstein, 1989; Carbonell et al., 1992; Jansen, 1992; Zeng, 1994). In these studies,
the derivations of MLEs using the EM algorithm vary with the genetic models specified and the
populations considered. Also, these studies do not provide the asymptotic variance—covariance ma-
trix for the estimates. In this section, general formulas for the MLEs and the asymptotic variance—
covariance matrix of QTL positions and effects are described using an F, population as an example.
The general formulas, which are based on a genetic design matrix D and a conditional probability
of QTL genotype matrix Q, can apply to different genetic models, experimental populations, and
using multiple marker intervals in QTL mapping.

7.1 General Formulas for MLEs

The normal mixture model in equation (2) can be treated as an incomplete-data problem (Little
and Rubin, 1987) because the genotypes of QTL are unknown. Let

pj1 if 2j =1 and z*———%
gj(z5,25) = { pja ifz] =0and 2] = z ' (4)
pjz ifzj =—1and 2] = ——%

be the distribution of QTL genotype specified by m’; and z;‘ We treat the unobserved QTL
genotypes (z} and 27) as missing data, denoted by y(p;s,j), and treat trait (y;) and selected markers
and explanatory variables (X;) as observed data, denoted by Y(obs,j)- Lhen, the combination of

Y(obs,j) aNd Y(mis,j) is the complete data, denoted by y(com, ;). In this setting, we can apply the
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EM algorithm to obtain the MLEs. The conditional distribution of observed data, given missing
data, can be considered as an independent sample from a population such that

yj | (0, X;,25,25) ~ N(zja + 2 d + X;8,0%).
The complete-data density function is thus
f(y(com,j) |6) = f(y(obs,j) | avva:B;vZ;) g(x;'(vzj)v

the product of densities of conditional observed data and missing data.

At a given position, p can be determined, and the EM algorithm is used for obtaining the MLEs
of a, d, 8, and 0. By definition, the iteration of the (¢ + 1) EM-step is as follows:

E-step: Compute the conditional expected complete-data log-likelihood with respect to the
conditional distribution of Y,,;s given Y ;s and the current estimated parameter value G(t),

QO | e(t )= /log L(o | Yeom)f(Ymis | Yobs, 0 = e(t)) Y mis

g

n
= /IOg H é (u> gj(x;,z;) x f (Ymis | Yobs,0 = 0(t)> dY mis.
j=1

Because each observation is independent, the joint probability of n observations f(Y ;s | Y ps,0 =
9®) is the product of n individual probabilities FY(mis,j) | Y(obs,j)> € = 6®), j =1,...,n. By
Fubini’s Theorem (Ash, 1972), we obtain

n
Yj — Ky x %
@ (0 | 9@)) - Z/k’g [¢< S J)gj(xj,zj)} xf (y(mis,j> | Y(obs,g),0 = G(t)) BY(mis,j)
j=1

> — Hji Pji¢ (%l)
oo (2522) ]« 0

p o pid (Y

o(t)
> — 1
> tos [o (M) ]

51:

I

J

Il
i M:
I
=
Il

J

A simple application of Bayes’ rule on f(y(mislj) | Yeobs,j): 0 = Q(t)) leads to m;; =

[p5sd((y; — pg3)/0)] / (=3 1pﬂ¢ yj — Kji)/0)], which is the posterior probability of the QTL
genotype. Equivalently, we can view this as updating the 7;; in this step.

M-step: Find 9(*+1) to maximize the conditional expected log-likelihood Q(6 | 0(t)): By taking
the derivatives of Q(0 | H(t)) with respect to each parameter, the solutions of parameters in closed
form are as follows. For a and d,

® by
(t+1) 2j-1 [( "1 _W73) (yj _Xﬂ(t)> ~3 ( o jl)) d(t)}
a =
S 1( (t) (t)>
j

(Y- X,B(t))’l'l(t) 1 H(t)(D1#D2)d(t)

(5)
1'TI) (D1 #Dy)
no1((__(%) @ _ @) _ t ) _ @Y, (t+1)
o b+ 2) = 00) - (2 2) )]
t t t
1o (0 + w3 425
_ (Y =Xy Dy — 111" (D #Dg)a+1) ©)

1VII(%) (Dy# Do)

where # denotes Hadamard product, which is the element-by-element product of corresponding
elements of two same-order matrices, IT = {m;}nx3. There is a rule in formulating the solutions. In
maximizing Q(6 | G(t)) with respect to a, the corresponding vector D; in the genetic design matrix
D plays a central role in the formulation. Likewise, Dy plays the same role in the formulation for
the genetic parameter d. If more genetic parameters are involved in the model, their corresponding
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vectors in the genetic design matrix would play a similar role in the formulation. Thus, for simplicity,
we can write equations (5) and (6) as

G+ _ L0) _ M(t)E(t), . (7)
where
(Y—XB)'TID, 0 1'TI(D, #D3)
_ | 7TI(D1#Dn) and M = 1'II(D1#D1)
~ | (Y=-XB)'TID, T | YD #Dy) 0 '
1TI(D2#Dz) 1'II(D2#D32)

Note that M is not a symmetric matrix. For 8 and 02,

ﬂ(t+1) — (X/X)—lxl[Y _ I—I(t)DE(t+1)] (8)
G2 %[(Y — xBHDY (v — X3y Z oy — Xg¢HD)y I Rt
+ E/(t+1)v(t)E(t+l)], (9)

where

_ [VTI(D1#D1) 1TI(D1#D>)

V= | 1T(Do#Dy) VTH(Da#D) |-

Note that V is a symmetric matrix. The E and M steps are iterated until a convergent criterion is
satisfied. The converged values of a, d, 8, and o2 are the MLEs.

To see how to use these general formulas for other genetic models and populations, we take an
epistasis model for two unlinked QTLs in a backcross population as an example. The proposed
genetic model is

Gir 1 12 1/2  1/4

G| |1 1/2 -1/2 -1/4 o

Gor | = |1 B+ “12 12 —1/al | =14x1p¢+ Dyxs E,
Goo 1 ~1/2 -1/2 141 "

where G11, G109, Go1, and Ggg are the genotypic values of genotypes AABB, AABb, AaBB,
and AaBb. The genetic parameters a1, a2, and i are the marginal effects of QTL A, B, and the
epistatic effect of A and B. The genetic design matrix D with dimensions 4 X 3 characterized that
the likelihood is a mixture of 4 normals and has 3 genetic parameters (excluding p) to estimate.
Accordingly, IT matrix is an n X 4 matrix.

_[(¥-xgm D, _[vYno#p)
r‘{ TI(D,#D3) }le and M‘{l’H(Di#DZ) X‘S(Z#“}m’

where 6 is an indicator variable. V = { lll'I(Di#Dj) }3x3. In deriving the MLEs, in the E-step
the posterior probabilities 7j;’s of the four QTL genotypes are updated, and in the M-step the
equations (7) to (9) are applied to maximize Q(6 | H(t)) with D, IT, M, r, and V specified above.
When more marker intervals are used in analysis, it is easy to expand the domensions of IT, M, r,
and V according to the dimensions of D for the use of general formulas.

7.2 General Formulas for the Asymptotic Variance—Covariance Matriz

The above EM algorithm gives only point estimates of parameters. Additional steps are needed
to find the variance—covariance matrix. When the EM algorithm is used, Louis (1982) derived
a procedure for obtaining the asymptotic variance—covariance matrix. Meng and Rubin (1991)
suggested using the SEM (supplemented EM) algorithm. Here, we adopt Louis’s method to derive
the asymptotic variance—covariance matrix.

Obtaining the asymptotic variance—covariance matrix is equivalent to extracting the observed
information (I,ps) in the incomplete-data problem. The complete-data likelihood model in this
problem can be regarded as a two-stage hierachical model. First the values of random variables
(x;,z;‘) are sampled by a trinomial experiment to decide QTL genotype, and then a normal
variate for that QTL genotype is generated. The random variables (:c;‘,z;) of individual j are
(1,-1/2),(0,1/2), or (—1,—-1/2) for QTL genotype QQ, Qq, or gg with probability p;i, pj2, or

p;3, respectively. Therefore, the complete-data likelihood is
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n

—3(@5+1) (25~ 3) o @) (204D
)‘(YCOm!pzazdzgzzlg H|:p]1¢( 'ujl) 2 7 pj2¢<y] OMJZ) J J

_ X Pisd (—UMJB) e _1)(ZJ_7)] .

Louis (1982) showed that the observed information I, is the difference of complete Ioc and missing
Iom information. That is, Iops(0% | Yobs) = Toc — Iom, where

& 0? log ’\(y(com,j) | )
Toc = Z B |— 502

Y(obs,j)» 9:!

j=1 9=0*

and

Olog A( Y(com,5) ‘ ) Olog )‘(y(comj ) | 0)
Iom = E E{ |: 90 90 | y(obs,g)?
6=06*

= alOg)‘ Y(com,3) | 0) alOg/\(y(cam,j) | 9) '
+Z | { 50 | Y(obs,i)» 0 o E 20 | Y(obs,j)» 0 e
i#j 0=0 =6

0* denotes the MLE of 6.

7.2.1 The Complete-Data Information Matriz. The complete-data information matrix Ioc is
obtained as

Ioe = =
—021], (PP #I)1; 45 0 0 0 0
0 Lo TH(D1#D1) 15, TH(D1#D2) Z515,, (TI#T) Dy DiIr'X
0 1, T(D2#D1) 15, T(D2#D2)  Z5 15, (TI#T) Dy DyIT'X
0 d_2 nxl(n#T)Dl 12 nxl(H#T) # U%lgxl(n#T)’x
0 X'T1D, X'TID, ;IEX'(H#T)lgxl X'X

The derivations of some elements in Ioc are shown below.

n n 3
82 log)\ 2 2
Toc 11 = ZE [ ! l Y(obs,5)» :| =- Zng'i)'”ji = - 1‘In><1(P( )#H)13><1:
j=114=1
where pg) denotes the second derivative of log mixing proportion pj;; with respect to p. If pj;

(2

equals 0, we assign the corresponding p i

(2

to 0. For an individual j, pj;’ can be obtained from the

corresponding row element of the matrix Q(2).

0 0
1 1 0
(1-p)? TP
__2 =2p’+2p—1 _2
(1-p)? p?(1—p)? p?
_1 1 0
p? (1-p)?
Q@ = | =2p’+2p—1 4c[l+c(=2p°+2p—1)] —2p°+2p—1
pZ(1-p)? [1—2cp(1-p)]2 pZ(1-p)?
0 i %
P) 13
_2 —2p°+2p—1 2
p? p?(1—p)? (1-p)?
0 _ 1 -1
p? (1-p)?
L0 0 0o |

with elements obtained by taking the second derivative of corresponding log elements in matrix Q
with respect to p. Therefore, Q(Q) follows Q.
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"L [6%log 9 log A,
Ioc 24 = _ZE 9ado 3. 3.9 ] y(obs,]):
1

n
1
= Z [(wj — i) min — (yj — mja)mys] = p Lnx1 (T#II) Dy,

where T = {tji}n)(3- tj1 = y; — 41, tj2 = y; — pj2 and t;3 = y; — pj3. To relate T to the genetic
design matrix D, we express T = (Y — X8)®11x3—1,x1®(DE)’, where ® denotes the Kronecker
product. Similarly,

a2
0“log A; 1
Ioc 25=—ZE W“/(obs,j)’a Y.

M:

1
X;(mjn = mj3) = — DiIr'x

<.
Il
A

n r a2 B 3
0“log \; 1
Toc 45 = _ZE W | y(obs,j)a0 = ZX] — HKjk W]k] = Py [113><1(H#T)/X]
=1 L k=1

Q=
NE

L

<.
Il
—_

NE

n_ora2
0 log \; 1
Ioc 22 = —ZE _8?2—1 [ Y(obs,j): 0| = =

1
[mj1 4+ 7538] = ;1;1><1H(D1#D1)

Q

<.
Il
—_

The other elements of the complete information matrix Ioe can be obtained in the same way. If
more intervals are involved in the model, it is straightforward to expand the complete information
matrix by incorporating corresponding vectors in the genetic design matrix D and the conditional
probability matrix Q in the formulation.

7.2.2 The Missing Information Matriz. The leading element in the missing information matrix is

n ’
Olog \; Olog\;
Iom 11 = Z_: [( ) ( ap ]) Iy(obs,j):Q:‘

6=0*

n /
+ Z I: [810g)\ | Y(obs,i)» 0:| E [81?9?)/\] Iy(abs,] 6:| }
i#j 0=0~ 0=0~
n 3
:ZZ[ﬂc} ﬂ]k+2[lzplkﬂk] lzp k7r]k‘|‘|
Jj=1k=1 i#j LLk=1

= 1 PVHPOHII) 135, +i [(PO#1L) 101 | [ (P #1) 151]
i#]

where P(1) = {pg»?}nxg. Row vector P;l) (p ;11 p§12 p§3)) where pﬁ) denotes the first derivative
of log pj; with respect to p. For those individuals with p;; being 0, we also assign the corresponding
pﬁ) to 0. Again, for a given individual 7, pg.l.)

;. can be found from the corresponding row element of
matrix Q(l),

r 0 0 0 7
1 1
T » 0
2 1-2p 2
(1-p) p(1-p) P
1 1
» T 0
Q(l) — 1-2p —2c(1—2p) 1-2p
p(I-p) 1-2cp(1-p) p(1-p)
0 -1 1
1-p P
2 1-2p _ 2
p p(1-p) I-p
1 1
0 7 T
L O 0 0o U




Obtaining MLEs and Asymptotic Variance—Covariance Matriz 661

with elements obtained by taking the first derivative of corresponding log elements in matrix Q with
respect to p. Likewise, the other elements in the missing information matrix Iom can be derived
and expressed in a similar way,

n
Tom 12 = —5 ot PORTHIOD: + = 37 [(PV#IL) 15 | ((T5#11,) 1)
i#]
It can be seen that there is a general trend in the derivation. When the derivative involves p, the
formula contains P! and 13%1. When the derivative involves a, the formula contains T and the
corresponding column Dj in the genetic design matrix. Following this rule, we can easily derive
the other elements. For example,

n
1 1
Tom 18 = 5 Lt PORTHI D, + — 3 [(PVHIL) 15| (T411) Do,
i#j

Likewise,

n
1 1
Tom 14 = ;fnxl(P(l)#S#H)l:Bxl + ; Z [(Pi(l)#ni> 13><1:| [(Sj#nj)13xl]7
i#j
where S8 = {s;;}nx3 with s;; = t?i/(202) —1/2 and S; = (sj1 sj2 sj3). Thus, when the derivative

involves 02, the formula contains S and 13y 1. Similarly,

n
Tom 15 = % 1,1 (THPUMHIT)X + 0—12 > [ (Ti#TL) X, [(P;”#Hj)lgxl] ;
i#]
that is, when the derivative involves 3, the formulas contain (X;Xj) and 13x1. The other elements
can be derived and expressed in the similar way.

Both the complete and missing information matrices are characterized by the genetic design
matrix D and the conditional probability matrix Q. As T, S, II, P(), and P follow D and
Q, the formulas for the information matrices can thus be readily used for other different genetic
models, experimental designs, and data structures. The observed information can then be obtained
by subtracting the missing information from the complete information. The inverse of the observed
information matrix gives the asymptotic variance—covariance matrix of QTL position and effects.

8. Simulation Result

Simulations were performed to study the properties of the asymptotic variances of the QTL position
and effects using a backcross population. We propose the following genetic model,

G= [gj = [ﬂ w+ [_11//22} [a] = 12x1p + DE, (10)

for QTL mapping, where G; and G2 denote the genotypic values of the genotypes QQ and Qq.
The genetic design matrix D in this case is a vector and E is a scalar. The conditional probability
matrix Q is given in Table 1. The MLEs and the asymptotic variance—covarince matrix are obtained
using the general formulas.

We assume only one QTL on a chromosome with 16 equally spaced markers. Two marker interval
sizes, 5 and 15 cM, are considered. In each case, the QTL position is located either in the middle or
at the boundary of the fourth interval. Sample sizes are 200 and 500. T'wo heritabilities (hz), 0.1 and
0.2, are considered in each set of simulations. A trait with heritability (h? = 0.1) means that 10%
of the trait variation is controlled by QTL and the remaining 90% is subject to the environment
(random error). The genetic parameters u and a are 0 and 0.7705. IM is used to search at every
1 cM position of the chromosome for the QTL. The threshold value to reject the null hypothesis
is 6.9 (about 1.5 in lod score) (Lander and Botstein, 1989). If the estimated position is coincident
with the marker, the asymptotic variance of position p is difficult to obtain and only those of u, a,
and S are provided by our approach. By comparing the MSE of the estimates between the results of
two different QTL positions, no uniform conclusion on the performance of estimates can be drawn.
Also, the pattern of results in the two different positions are similar. Therefore, only the results of
the QTL located in the middle of the interval (Tables 3 and 4) are shown for illustration.
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Table 3
Simulation result of 100 replicates with h? = 0.1
Mean of Emp. Mean of est. SD of est.
Parameter estimates SD MSE asym. SD asym. SD
size = 15 cM n = 500
Position 52.5 52.13 5.1574 2646 3.6712 2.1270
L 0 0.0084 0.1109 1.2233 0.1175 0.0598
a 0.7705 0.7567 0.1109 1.2340 0.0988 0.0089
o2 5.343 5.3198 0.3398 11.23 0.3431 0.0209
size = 15 cM n = 200
Position 52.5 51.982 11.15912 118562 4.9589% 1.31912
L 0 0.0303% 0.1706% 2.8530% 0.1691% 0.0365%
a 0.7705 0.7983% 0.1583% 2.4555% 0.1521% 0.0095%
o2 5.343 5.1469% 0.49012 26.058% 0.52462 0.04952
size = 5 cM n = 500
Position 17.5 16.72 3.1045 1015 1.9290 0.5433
L 0 0.0083 0.1092 1.1876 0.1156 0.0766
a 0.7705 0.7659 0.1117 1.2374 0.0945 0.0030
o2 5.343 5.3144 0.3298 10.85 0.3377 0.0206
size = 5 cM n = 200
Position 17.5 18.26° 5.9000° 3432.5P 2.6379° 0.8488P
L 0 0.0289P 0.1684° 2.8328P 0.1697° 0.0954°
a 0.7705 0.8037" 0.1672P 2.8209° 0.1465° 0.0077°
o2 5.343 5.1460° 0.4909 27.178" 0.5177° 0.0492°

@ Based on 96 significant replicates.
b Based on 98 significant replicates.

We concentrate on the performance of the estimates of the asymptotic standard deviations
(ASD). For the cases with h? = 0.1, the means of the estimates of the ASD for the QTL position
significantly underestimate the empirical standard deviations (SD) in all cases (Table 3). For the
case with h? = 0.2, the means of the ASD estimates are very close to the empirical SD. The
explanation for the underestimation in h? = 0.1 cases is that with h? = 0.1, there is a relatively
high chance that the QTL is identified in the wrong interval in the search for the whole chromosome.
The percentages of the QTL being localized in the correct interval are 86%, 75%, 69%, and 42%
for the cases with interval size 15 ¢cM and n = 500, 15 ¢cM and n = 200, 5 cM and n = 500,
and 5 ¢cM and n = 200, respectively. Clearly, several replicates in each case have identified QTL
in the wrong intervals. This causes a larger empirical SD for the position estimate. However, the
estimates of ASD are still calculated based on a 15 (or 5) ¢cM marker interval. Therefore, the mean
of the estimated ASD underestimates the SD. When h? = 0.2 (Table 4), the percentages of the
QTL being localized in the correct interval increase to 98%, 94%, 89%, and 69% for the four cases,
respectively. Fewer replicates than those for h? = 0.1 have QTL identified in the wrong interval.
The estimated ASD are calculated based on the correct interval so that it gives a good estimation.
Therefore, to make the ASD of this approach reliable in QTL mapping, it is very important to
localize the QTL in the correct interval. When the QTL is localized in the wrong interval, ASD is
-underestimated. This is the limitation of this approach.

Among the ASD of the mean pu, QTL effect a, and environmental error o2, the ASD of a
estimates its empirical SD poorly. In Tables 3 and 4, the range of mean ASD =+ 2 SD fails to cover
the empirical SD in several cases. We think that it is because the convergence of the ASD of a is
slower. Although the ASD of a underestimates the empirical SD, it is still close to the empirical
SD and estimates the sampling variance reasonably well:

9. Discussion

In this paper, we use a normal mixture model to model the relationship between a quantitative
trait and the unobserved QTLs using genetic markers, then we present general formulas for
deriving the MLEs and the asymptotic variance—covariance matrix of QTL positions and effects



Obtaining MLEs and Asymptotic Variance—Covariance Matrix 663

Table 4
Simulation result of 100 replicates with h? = 0.2
Mean of Emp. Mean of est. SD of est.
Parameter estimates SD MSE asym. SD asym. SD

size = 15 cM n = 500
Position 52.5 52.52 2.5956 666.75 2.6892 0.7498
n 0 —0.0057 0.0746 0.5547 0.0934 0.0948
a 0.7705 0.7592 0.0746 0.5634 0.0577 0.0082
o2 2.3747 2.3668 0.1514 2.2749 0.1622 - 0.0164

size = 15 cM n = 200
Position 52.5 52.09 3.9749 1581 3.9681 0.8074
n 0 0.0187 0.1182 1.4184 0.1219 0.0189
a 0.7705 0.7703 0.1177 1.3713 0.0853 0.0067
o2 2.3747 2.2991 0.2245 5.5564 0.2424 0.0240

size = 5 cM n = 500
Position 17.5 17.22 1.5412 234 1.4391 0.3094
n 0 0.0053 0.0732 0.5336 0.0777 0.0206
a 0.7705 0.7656 0.0759 0.5734 0.0530 0.0025
o2 2.3747 2.3631 0.1465 2.1393 0.1510 0.0092

size = 5 cM n = 200
Position 17.5 17.73 2.7000 727 2.1410 0.7824
n 0 0.0183 0.1145 1.3317 0.1235 0.0283
a 0.7705 0.7806 0.1157 1.3369 0.0818 0.0062
o2 2.3747 2.2933 0.2191 5.4104 0.2323 0.0236

of the model when the EM algorithm is used in derivation. The general formulas are based on a
genetic design matrix D and a conditional probability matrix Q, where D characterizes the genetic
effects and Q contains the information on QTL positions. The formulas are general because they
apply to different genetic models, experimental designs (e.g., backcross and Fy populations), and an
arbitrary number of marker intervals. The general formulas enable us to consider multiple marker
intervals simultaneously in QTL mapping. There are several uses for multiple interval mapping.
It can be used for a multidimensional search for multiple QTLs or for searching one interval for
a QTL by conditioning on other identified QTLs at given positions to increase the precision and
power of mapping, for analyzing QTL epistasis, and for estimating the heritability.

If k intervals are considered jointly in mapping, the dimensions of the genetic design matrix D
augment to 2% x k for a backcross population and to 3 x 2k for an Fy population when epistasis is
ignored. Taking a backcross population as an example, if we want to consider three marker intervals
(three putative QTLs) simultaneously and use an additive model, the genetic model can be de-
fined as

rG1117] 17 r1/2 1/2 1/2 7
G110 1 1/2 1/2 -1/2
G101 1 1/2  -1/2 1/2 ar
e P A R By S B L SR
Goto 1 ~1/2 172 -1/2| -8
Goo1 1 -1/2 -1/2 1/2
L Gooo J L1] L-1/2 -1/2 -1/2]

where G111, G110, G101, G100, Go11, Goio, Goo1l, and Gpoo denote the genotypic values of
QTL genotypes AABBCC, AABBCc¢, AABbCC, AABbCc¢, AaBBCC, AaBBC¢, AaBbCC, and
AaBbCec, respectively, and a1, az, and a3z denote the effects of QTLs A, B, and C. The genetic
design matrix D with dimensions 8 x 3 specifies that the corresponding likelihood is a mixture
of 8 normals and has 3 genetic parameters to estimate. To infer the joint conditional probability



664 Biometrics, June 1997

matrix Q for the three putative QTLs, we use the property that if there is no interference in
crossing over, the conditional distributions of the individual putative QTL genotypes given the
flanking marker genotypes are independent, irrespective of whether the QTLs are linked or not.
This independence property simplifies the inference of Q matrix. If epistasis of QTLs B and C
is also analyzed, the dimensions of genetic design matrix D in equation (11) augment to 8 X 4.
Column 4, which is the product of columns 2 and 3, of the genetic design matrix represents the
status of the epistatic parameters of different genotypes. The Q matrix is the same as that for
the additive model. Kao (1995) applied the general formulas to study digenic epistasis in an Fj
population (the dimensions of the genetic design matrix are 9 x 8). If higher order of QTL epistasis
is considered, the corresponding column vector of D can be generated by the same procedure. By
this approach, QTL epistasis can be incorporated in the model easily for analysis. Again, given D
and Q in both cases, the general formulas can be used to obtain the MLEs and the asymptotic
variance—covariance matrix for the model. When all the putative QTLs and their possible epistasis
are taken into account in the model, the model sum of squares divided by total sum of squares is
the estimate of heritability.

It is very important to construct confidence intervals for the estimates of QTL positions and
effects. For example, when a particular QTL is to be transferred to a recipient, a confidence
interval for the QTL position can give us an idea about how large a chromosome segment around
the detected position should be transferred. The asymptotic variances can be used to construct the
confidence intervals. For a large sample, the (1 — @)% confidence interval for a position estimate p
can be approximated by (p— Z(1_q/2)5p » P+ Z(1-a/2)5p)- Other approaches for constructing the
confidence interval of QTL position, such as the LOD support interval (Lander and Botstein, 1989)
and bootstrapping, can also be used. By our approach, if the estimated QTL position is right on the
marker, there is no position parameter (p) in the model. Its asymptotic variance cannot be provided.
In this situation, we might intentionally delete this marker and use the two nearby markers to form a
mapping interval. We then perform mapping on this interval and estimate the asymptotic variance.
Generally, the asymptotic variance of the QTL position estimate underestimates the sampling
variance since there is no guaranty that the QTLs can be localized in the correct intervals in QTL
mapping. To localize the QTL in the correct interval, we require reliable experimental designs,
mapping analyses and strategies to increase the precision of QTL mapping.
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RESUME

Nous présentons dans ce papier les formules générales permettant de dériver les estimations du
maximum de vraisemblance et la matrice de variance—covariance asymptotique des positions et des
effets de loci de traits quantitatifs (QTLs) dans un modéle de mélange fini de variables normales,
lorsque l'algorithme EM est utilisé pour la localisation des QTLs. Les formules générales sont basées
sur les deux matrices D et Q, D étant la matrice du patron génétique, caractérisant les effets
génétiques des QTLs, et Q la matrice des probabilités conditionnelles des génotypes QTL, étant
donné les génotypes avec les marqueurs flanquants, contenant ’information de la position des QTLs.
A Daide des formules générales, il est relativement aisé d’étendre 1’analyse de la localisation des
QTLs & 'usage d’intervalles de marquage multiples, afin de réaliser simultanément la localisation de
QTLs multiples, I’analyse de 1’épistasie des QTLs et ’estimation de I’héritabilité des caractéristiques
quantitatives. Des simulations ont été réalisées pour évaluer la performance des estimations des
variances asymptotiques des effets et des positions des QTLs.
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