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ABSTRACT 
Genetic  mapping of quantitative  trait loci (QTLs) is performed  typically by using  a  parametric a p  

proach,  based on the  assumption  that  the  phenotype  follows  a  normal  distribution. Many  traits of 
interest,  however,  are not normally  distributed.  In  this  paper,  we present  a  nonparametric  approach to 
QTL mapping  applicable to any  phenotypic distribution.  The  method is based on a statistic Zw, which 
generalizes  the  nonparametric  Wilcoxon  rank-sum  test  to  the  situation of wholegenome search by 
interval mapping. We determine  the  appropriate  significance  level  for  the  statistic Zw, by showing  that 
its asymptotic null  distribution  follows an Ornstein-Uhlenbeck  process.  These  results provide a  robust, 
distribution-free method for  mapping  QTLs. 

M APPING genetic loci responsible for quantitative 
traits (quantitative trait loci or QTLs) in plants 

and animals is an  important  problem with a broad 
range of applications. Physiological traits involved in 
human disease can be studied through  the genetic dis- 
section of quantitative modifier genes in experimental 
models such as mouse and rat. Such studies have been 
carried out for hypertension (HILBERT et al. 1991; JACOB 
et al. 1991 ) , type I diabetes (TODD et al. 1991 ) , epilepsy 
(RISE et al. 1991) and colon cancer ( DIETRICH et al. 
1993). Similarly, genetic mapping of QTLs influencing 
agriculturally important traits can lead to a better  un- 
derstanding of such traits as  well as to novel  improve- 
ment programs. Recent examples include  mapping 
QTLs for fruit mass in tomato ( PATERSON et al. 1988) , 
grain yield in maize ( STUBER et al. 1992) and fatness 
and growth in pigs (ANDERSON et al. 1994). Although 
the  notion of QTL mapping dates back to early in the 
century (SAX 1923) , there has been a recent explosion 
of interest  fueled by the development of genetic linkage 
maps based on DNA polymorphisms for a number of 
organisms including  the mouse ( DIETRICH et al. 1992, 
1994), zebrafish (POSTLETHWAIT et al. 1994), pig 
( ROHRER et al. 1994), cattle (BISHOP et al. 1994), rice 
and maize (AHN and TANKSLEY 1993) and tomato and 
potato (TANKSLEY et al. 1992). Improvements in ex- 
isting maps and development of  new ones will continue 
to present new opportunities  for QTL mapping. 

Initially, QTL mapping was carried out by looking 
for associations between genotypes at individual mark- 
ers and phenotypic traits of interest ( SAX 1923; SOLLER 
and BRODY 1976). LANDER and BOTSTEIN ( 1989) intro- 
duced  the somewhat more powerful approach of inter- 
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Val mapping, in  which the presence of a QTL can be 
tested at every location in a genome by exploiting the 
full power  of a complete genetic linkage map. Because 
genome-wide searches involve testing many hypotheses 
concerning  the possible location of Q T L s ,  a key issue 
is the  proper statistical threshold  to  correct for such 
multiple testing. LANDER and BOTSTEIN ( 1989) derived 
the  appropriate threshold to keep  the false  positive rate 
low, by relating the QTL statistic (the LOD score) to 
a known random process (the Ornstein-Uhlenbeck dif- 
fusion).  The basic approach of interval mapping has 
been  further generalized by a number of authors ( e.g., 
LUO and KEARSEY 1992; JANSEN 1993; MORENO-GONZA- 
LEZ 1993; RODOLPHE and LEFORT 1993; ZENG 1993; 
FULKER and CARDON 1994; HALEY et al. 1994; JANSEN 
and STAM 1994). 

All these QTL mapping  methods  share a common 
assumption: that  the  phenotype follows a normal distri- 
bution with equal variance in both  parental strains. Un- 
der this assumption, the presence of a QTL can be 
tested by a simple parametric test ( a  t-test in the case 
of a single marker test, the related LOD score in the 
case  of interval mapping). 

Many phenotypes of interest, however, are  not  nor- 
mally distributed. Examples include  counts  generated 
by a Poisson process [such as number of tumors, which 
in many  cases  follows a negative binomial distribution 
( DRINKWATER and WOTZ 1981 ) 1 ,  truncated  data  (such 
as  survival  times  in an  experiment of limited duration), 
probabilities (such as chance of an epileptic seizure in 
a given trial),  and qualitative data  (such as severity 
grades assigned upon histological examination ) . Tradi- 
tional QTL mapping  methods  cannot  be directly ap- 
plied in such cases. One approach is to attempt  to find 
a mathematical transformation that will convert the 
trait into  an approximately normal distribution with 
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equal variance in both  parental strains (WRIGHT 1968 ) . 
The problem is that this approach may not work: no 
appropriate transformation may be found,  and, even if 
one is, the effect of outliers may still be too great. 

An alternative approach is to apply nonparametric 
( or distribution free ) methods to QTL mapping. In  the 
case  of a single marker, this is straightforward. Con- 
sider, for example, an (A  X B) X A backcross.  For  any 
given marker,  the backcross progeny can be classified 
according to genotype as either A (parental)  or H (hy- 
brid).  One then can perform a  nonparametric Wil- 
coxon rank-sum rank test (see, e.g., LINDGREN  1968) to 
decide whether the distribution of the phenotype dif- 
fers between the two groups. For tumor  counts  that 
follow a negative binomial distribution, this test was 
found in  many  cases to be more powerful than  the t -  
test ( DRINKWATER and KLOTZ 1981 ) . Appropriate sig- 
nificance thresholds for the Wilcoxon  rank-sum test 
may be  found in ( LINDCREN  1968) and in other stan- 
dard statistics  texts. 

To  extend this approach to a genome-wide QTL 
search, two  key issues must be addressed: how to gener- 
alize the Wilcoxon  rank-sum  statistic to the region be- 
tween markers and how to determine  the  appropriate 
significance threshold for genome-wide search that 
maintains a low false  positive rate. In this paper, we 
solve these problems by defining a version  of the Wil- 
coxon rank-sum  statistic appropriate  for interval m a p  
ping and showing that  the statistic is asymptotically  dis- 
tributed as an Ornstein-Uhlenbeck diffusion in the case 
that no QTL is present, allowing the  appropriate sig- 
nificance threshold to be derived from the  extreme 
value properties of this process. These results provide 
the analog of the work  of LANDER and BOTSTEIN ( 1989) 
for nonparametric QTL mapping. 

RESULTS 

Notation: We introduce  the following notation. Con- 
sider a cross  in  which n progeny (labeled by i ,  i = 
1, . . . , n) are  phenotyped  for  a quantitative trait and 
are genotyped at m genetic markers (labeled by j ,  j 
- 1,. . . , m) across the  genome. Let 4, denote  the 
phenotype of progeny i and  let s, denote  the position 
of marker j in the  genome. The function gi (s) will 
denote  the genotype of progeny i at any location s in 
the  genome, so that g, ( s i )  denotes  the genotype of 
progeny i at marker j .  The complete genotype data is 
denoted by DATA = [ gi ( si) I i ,  i. Let E [  XI DATA] de- 
note  the  expected value  of a quantity Xgiven the geno- 
type data  and  let ( X )  denote  the  expected value  of X 
in the absence of genotype data, i.e., over  all  possible 
sets  of genotypes. 

Definition of nonparametric statistic for QTL map 
ping: We  will initially consider an  (A X B )  X A back- 
cross; a generalization to  other crosses will be discussed 

- 

below. The genotypes of the progeny are  either  A (pa- 
rental)  or H (hybrid). We define the function x, (s) 
to be +1 or -1 according to whether  the genotype 
g, (s) is A or H. 

For  any location s in the  genome, we define a  non- 
parametric QTL  statistic Zw( s) . We first define an auxil- 
iary  statistic Yw( s) by 

Yw( s) 
12 

= x [ n  + 1 - 2 - r a n k ( i ) ] E [ x , ( s ) l D A T A ] ,  (1) 
t = l  

where rank( i) denotes  the  rank by phenotype of prog- 
eny i. At the location si of a  marker,  the value  of x, ( s i )  
is  known  with certainty. For other locations s, the value 
of xi ( s i )  is not directly observed, but its expectation 
E [  x, ( s,) I DATA] can be easily computed based on the 
genotypes observed at  the closest flanking markers (see 
APPENDIX A for  an explicit formula) . The statistic Zw( s) 
then is defined by 

Zw(s) = Y w ( ” 3 - T ,  ( 2 )  

that is, by dividing Yw by its standard deviation (see 
APPENDIX A  for  an explicit formula in terms of the re- 
combination frequencies between s and  the nearest 
flanking markers). 

When s coincides with the location of a genetic 
marker, Zw( s) is  easily seen to be equivalent (up to 
rescaling) to the Wilcoxon  rank-sum  test.  More gener- 
ally, for any location s in the  genome unlinked to a 
QTL, Zw( s) is asymptotically distributed (for large n) 
as a  standard  normal variable  with mean 0 and variance 
1. (See APPENDIX A for details.) Thus,  the significance 
level  of Zw( s) at any single point s can be evaluated by 
a t-test. 

If the phenotypes are discrete rather  than  continuous 
(e.g., counts), tied phenotypic values may occur in the 
data set. Two methods of handling ties are available 
( KENDALL and STUART 1979).  The first is to rank tied 
individuals at  random. This approach has the benefit 
of  simplicity, because no new theory is necessary and 
all the results  above  apply directly. It does ignore some 
information contained in the  data.  The second ap- 
proach is to assign to each tied individual the average 
rank of those tied. This approach is somewhat more 
efficient, but the gain is slight ( KENDALL and STUART 
1979).  It has the drawback that  the variance of the test 
statistic now depends  on  the  number  and type of ties 
observed. We chose to use the first approach in view of 
its greater simplicity and only a slight loss  of efficiency. 

Appropriate  threshold for genome-wide  search: 
When searching an entire  genome for QTLs, one can- 
not use the threshold appropriate for testing signifi- 
cance at a single point. Because  many independently 
segregating markers are examined across the  genome, 
Zw( s) is  likely to show substantial deviation from 0 some- 
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where in the  genome  just by chance. One should select 
a threshold T such that  the probability (under the null 
hypothesis) that I Zw( s) I exceeds T anywhere in the 
genome equals the desired false  positive rate a. 

For QTL mapping of normally distributed traits, 
LANDER and BOTSTEIN ( 1989) considered  three cases. 
They are as  follows: sparse-map case,  in  which consecu- 
tive markers are  separated far enough to be considered 
independent; dense-map case, in which the  spacing 
between consecutive markers approaches zero; and in- 
termediate-map case,  in  which the spacing between con- 
secutive markers is moderate and is not well approxi- 
mated by either of the first two cases. 

The same approach may be used when considering 
appropriate thresholds for I Zw( s) I .  In  the sparse-map 
case, one studies only markers and treats each marker 
as independent;  the value  of I Zwl at each marker is 
assumed to be uncorrelated with the value at adjacent 
markers. The appropriate threshold is obtained from 
that  for  a single marker by a simple Bonferroni correc- 
tion for multiple testing. If  we test M markers, we set 
the  nominal significance level for each test at a / M and 
choose the single t-test threshold for this significance 
level. Note that since the values at adjacent markers 
are positively correlated, this threshold is a conservative 
choice; the actual false  positive rate is guaranteed to 
be less than a. In fact, the sparse-map approximation 
becomes too conservative  as the marker spacing de- 
creases; the  threshold  approaches infinity  as the marker 
spacing approaches 0. 

In  the dense-map case, one assumes that  the geno- 
type  is  known at every point in the  genome, i e . ,  that 
there  are markers everywhere. This is the limiting case 
for maps of increasing density, and  the threshold for 
this case is once again a conservative estimate, but  one 
appropriate  for  denser maps. In  the limiting case of an 
infinitely dense-map and large sample size, one can 
prove that  the statistic 2, follows an Ornstein-Uhlen- 
beck diffusion process (see APPENDIX B for details). 
The appropriate threshold then may be derived from 
the  extreme value properties of this process.  Specifi- 
cally, we have the following result (which is analogous 
to Proposition 2 in LANDER and BOTSTEIN ( 1989) con- 
cerning  the dense-map limit of the LOD score for para- 
metric QTL mapping). 

Proposition 1: For an organism with Cchromosomes 
and genetic length G (measured in Morgans), the 
probability that I Zw I exceeds a high threshold Tsome- 
where in the  genome is a = ( C + 2pGT2)P[ 121 > 
TI , where p = 1 is the  rate of crossovers per Morgan 
and P[ I Z I > TI = (2/&) J y .  is the probabil- 
ity that  a variable 2, distributed as a  standard  normal, 
exceeds T (this probability is  simply the two-sided  tail 
probability of the  standard normal). 

In  short,  the probability that 1 Zwl exceeds T some- 

Genome size (cM) 
FIGURE 1.-2-score  thresholds as a function of genome size 

for a false  positive  rate of 0.05. The solid line is for a genome 
with 20 chromosomes;  the  dotted  lines  are  for  genomes  with 
10 and 30 chromosomes. It is clear  that  the  number of chro- 
mosomes has very little effect on the  threshold  except  for 
very  small  genomes. 

where in the  genome is larger by a factor of ( C + 2GT2) 
than  the  corresponding probability at any  single point. 
For a given  false  positive rate a,  this equation can be 
numerically solved for  the  appropriate threshold T. 
Thresholds for several genome sizes are plotted in Fig- 
ure 1. For the mouse genome of 20 chromosomes and 
1600 cM, the significance  level a = 0.05 corresponds 
to a threshold of 3.9. (This is equivalent to  a LOD score 
of 3.3.) 

In  the intermediate-map case, one assumes that mark- 
ers are spaced uniformly with intermarker distance A 
Morgans. An approximation for the intermediate-map 
case is available. The  appropriate threshold T can be 
foundfrom a = [ C +  2pGT2v(2Tfi)]P[IZI > TI, 
where v (  x) is a special function that can be approxi- 
mated by x for small x ( SIECMUND 1985; FEIN- 
GOLD et al. 1993).  Note that as A decreases, v a p  
proaches 1 and  the threshold reduces to the dense-map 
case. As A increases, v is better  approximated by 2/ x2, 
and the threshold reduces to the multiple testing 
sparse-map case. This indicates that  the sparse-map ap- 
proximation is “correct” in the sense that it interpo- 
lates correctly between the sparse-map and dense-map 
cases (D. SIEGMUND, personal communication) . 

Which threshold  should  be used in practice? We 
would recommend strongly that  the dense-map thresh- 
old always be used (for both  parametric and  nonpara- 
metric QTL mapping) regardless of the actual density 
of the  map  used. Even if a  particular study employs a 
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relatively sparse map, it must  be  anticipated that simi- 
lar  studies on  the same trait will be  carried out by 
other researchers. Because of the  selection bias that 
only positive results tend to be  reported,  the scientific 
literature must regard all proposed linkages as  if they 
were obtained by scanning  the  entire  genome.  Other- 
wise, published  papers will contain  an excess of  false 
positive linkages. This  practice is employed in human 
genetics, where all reported linkages must meet  the 
LOD score  threshold of 3  appropriate  for whole-ge- 
nome  search. 

Note also that all significance thresholds in this paper 
are  computed  for  a two-sided test, in which large devia- 
tions of Zh5, in either direction from 0 are  considered 
significant. For a one-sided test, in which one searches 
only for positive  values  of Z,, the  appropriate  thresh- 
olds may be obtained by dividing all estimates of  false 
positive rates by 2. Such a test could, in principle, be 
used if the  direction of a QTL’s effect is known a priori. 
However, the fact that  one parental strain shows larger 
phenotypic values does not guarantee  that all QTLs 
segregating in that cross increase the phenotypic value 
in that  strain; some may decrease it. Because both kinds 
of QTLs are of interest, we would recommend  that  the 
two-sided threshold be used in all  cases. 
An application of nonparametric QTL interval  map- 

ping: To illustrate the use  of nonparametric QTL map- 
ping, we applied  the  method to data from a recently 
reported study of quantitative modifiers of intestinal 
neoplasias in mice. Mice carrying the Mzn mutation 
in the Apc gene  on chromosome 18 develop intestinal 
tumors, but  the  tumor  number is strongly influenced 
by genetic  background ( MOSER et al. 1992). By studying 
the distribution of tumor  number in (AKR X B6-Min) 
X B6 backcross progeny, DIETRICH et al. (1993)  found 
evidence for  a major QTL on chromosome 4.  The QTL 
locus, named Mom-1 (for Mo difier of M in-1 ) , was 
subsequently confirmed in two additional crosses. 

In the original AKR backcross, DIETRICH et al. ( 1993) 
genotyped 110 progeny for 75 markers throughout  the 
mouse genome. Because tumor  number was not  nor- 
mally distributed with constant variance, they applied 
a  square-root transformation to obtain  a  phenotype 
with a  more nearly normal distribution. Applying tradi- 
tional parametric QTL mapping to this transformed 
phenotype, they found  a LOD score of 4.7 for  the Mom- 
1 locus on chromosome 4 .  No other significant LOD 
scores were found. 

We reanalyzed the same data set using the  nonpara- 
metric statistic ZNT. The Mom-1 region on chromosome 
4 shows a peak of Z, = 4.33,  which is  well above the 
threshold of  3.9 appropriate  for  the mouse genome 
(Figure 2 )  . The dense-map significance level of this 
score is P < 0.01. (N .B . ,  as noted above, we apply the 
dense-map threshold and significance level  even 
though  the  marker spacing is  -20 cM) . This confirms 

Map distance  (cM) 

FIGURE 2. - Z-scores on  chromosome 4 in the Mom-I cross. 
The  dotted line is at Z = 3.9, the a = 0.05 threshold for  the 
mouse genome. Map distance is from the first marker.  Note 
that  the Z-score exceeds the threshold at  the location of the 
Mom-1 locus. 

that  the  detection of the Mom-1 locus is not sensitive to 
the assumptions of normality made by DIETRICH et al. 
(1993). 

The importance of using the  correct  threshold is illus- 
trated by Figure 3, which  shows the Zwscores for  chro- 
mosome 2.  The peak score approaches 3.0, which 
would be highly significant in a single marker test ( P  
< 0.003;  two-sided test). However, the  chance  that  the 
absolute value  of the .&-score exceeds 3.0 somewhere in 
the  genome is estimated by Proposition 1 to be -80%. 
In fact, because in this  case the false  positive rate is 
high,  a slightly better  approximation shows the  chance 
to be -60% (see APPENDIX B )  . No other chromosomes 
show high Z, scores. 

Generalization  to  other  crosses: Above, we have con- 
sidered an ( A  X B) X A backcross. We briefly comment 
on how to generalize these results to other crosses, such 
as an (A X B )  F2 intercross. To do so, one can redefine 
the  function x, ( s) by xi ( s) = f [ g, ( s) ] , where f is  any 
function  that maps genotypes to real numbers or,  more 
generally, to any real normed vector space. We assume 
that f is chosen so that (x, ( s) ) = 0, where the average 
is taken over the distribution of  possible genotypes. If 
f takes vector values,  every component must satisfy this 
condition. The statistic Zw( s)  can again be defined by 
Equations 1 and 2 ,  with the proviso that one uses the 
magnitude of Z,( s) if f takes  values in a vector space. 
The relevant expected values and variances may be 
computed using the following results: 
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Map distance (cM) 

FIGURE 3.-Z-scores on chromosome 2 in the Mom-1 cross. 
The dotted line is at 2 = 3.9,  the a = 0.05 threshold for 
the mouse genome. Map distance is from the first marker. 
Chromosome 2does not contain a QTL  affecting  tumor num- 
ber, and the  2-score is below threshold.  The peak value of 2 
is nearly 3.0, well in excess of the single-test  threshold of 2.0. 

where grz and gR are  the genotypes at  the left and right 
markers flanking s. 

In an F2 intercross, there  are  three possible geno- 
types: homozygous A, homozygous B and heterozygous 
H. One can test different hypotheses about  the pres- 
ence of a QTL  by using different  functions f .  To test 
for  a QTL with an additive effect, an  appropriate choice 
isf(A) = l , f ( H )  =O, f (B)  = -1 (wecalltheresulting 
statistic Z, for  future  reference) . To test whether prog- 
eny with genotype  A differ from  the other progeny 
(testing  for  the  presence of a QTL showing recessive 
or  dominant  inheritance),  one can lump  together 
progeny with genotypes B and H by using the  function 
f ( A )  = 3, f ( B )  = f ( H )  = -1 (call this statistic Z , ) .  
Alternatively, one can test for  dominance  (progeny with 
genotype  H differ from the average of those with geno- 
typesAandB)  byusingf(H) = l , f ( A )  = f ( B )  = -1 
(call this statistic Z,) . As above, the resulting statistics 

will be asymptotically normal. Proposition 1 applies, 
with the only difference being the value  of p. It can be 
shown that p = 1 for ZA, p = 4 / 3  for ZR and p = 2 for 
2,. The resulting dense-map thresholds  for  the mouse 
genome  are  3.9,4.0  and 4.1,  respectively (see APPENDIX 

B for details; see also DUPUIS  1994) . 
When the existence of a  dominance  component is 

suspected but its magnitude is unknown, it may be desir- 
able to test for  the  presence of a QTL with both additive 
and dominance  components. We define  a two-compo- 
nent statistic (Z,, 2,) , using ZA and Z,] from the reced- 
ing  paragraph,  and  the  joint statistic XLV = +- Z + 2 ;). 
Apart from the  square  root,  the resulting statistic corre- 
sponds to a generalization of the Wilcoxon rank-sum 
test to three  subgroups  (Section 31.71 of KENDALL and 
STUART 1979). Xk is asymptotically distributed as chi 
squared with two degrees of freedom.  Hence  the false 
positive rate  for X,may be determined from the proba- 
bility that  a  rough chi-squared process exceeds a high 
threshold. The relevant result is found in (ALDOUS 

1989, Section 119) and gives CY ( C + 2pGT') P[ X > 
TI, where P[ X > TI = e- 1s the probability that  a 
variable X ,  the  square of which is distributed as chi 
square with two degrees of freedom, exceeds T .  (cf. 
APPENDIX A of FEINGOLD et al. 1993 for  the one-sided 
test and DUPUIS 1994 for another derivation of this 
test). Here p = 1.5 is the average of the values for 
the additive and dominance  components. This result is 
completely analogous to Proposition 1. The corre- 
sponding  thresholds may be  determined as before, and 
are  plotted in Figure 4; the  threshold  for  the mouse 
genome is 4.44. 

A number of related  approaches exist for testing 
whether  three (or  more) genotypic classes differ in 
distribution of phenotypes. Among these are  the 
Kruskal-Wallis  test and the  Jonckheere-Terpstra test; see 
KENDAIL and STUART ( 1979)  for details. 

7"/2 . 

DISCUSSION 

QTL mapping is an  important  approach for dis- 
secting the  genetic factors affecting traits of  physiologi- 
cal and agronomic  importance. Rapid progress in the 
development of  DNA-based genetic linkage maps has 
made QTL mapping  a practical and widely used ap- 
proach. Parametric interval mapping allows efficient de- 
tection and localization of  QTLs for normally distrib 
uted traits, while keeping  the false  positive rate low 
through  the use  of appropriate thresholds (LANDER 
and BOTSTEIN 1989). However,  many traits of interest 
are  not normally distributed, and  the use  of standard 
QTL interval mapping  for such traits may lead to low 
power or unacceptably high false  positive rates. 

The results described in this paper  extend  the power 
of interval mapping to any quantitative trait regardless 
of  its distribution  through  the use of nonparametric 
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Genome size (cM) 
FIGURE 4.-Z-score  thresholds as a function of  genome 

size  for  an F2 intercross  when  both  additive and dominance 
components  are  searched  for.  The  false  positive  rate is set to 
0.05, and  the  genome contains 20  chromosomes. 

methods. The basic  statistic Z,is a generalization of the 
Wilcoxon  rank-sum  statistic to the situation of interval 
mapping. The Wilcoxon  test has been extensively stud- 
ied. It is  known that  the efficiency of this test relative 
to the t-test is 96%  for shift alternatives if the distribu- 
tion is normal and is never less than  86% for any distri- 
bution ( LINDGREN 1968).  The efficiency is defined as 
the ratio of the sample sizes required for the two tests 
to achieve the same (asymptotic) power; thus, the Wil- 
coxon test requires 1.04 times the sample of the t-test 
if the distribution is normal  and  at most  1.16 times the 
sample of the t-test for any distribution. The loss  of 
efficiency  in the case  of normally distributed trait is 
thus slight and is offset by the robustness of the  nonpar- 
ametric method. Moreover, the  nonparametric test can 
be  much  more powerful  in certain cases.  For an expo- 
nential distribution, the t-test requires  three times the 
sample of the Wilcoxon  test to achieve significance 
( KENDALL and STUART 1979) . 

Some other differences between the parametric and 
the  nonparametric  approaches should be  mentioned. 
The parametric method provides a  direct estimate of 
the phenotypic effect of the QTL, whereas the  nonpara- 
metric method simply  tests for the presence of a QTL. 
Also, the statistic for the parametric method,  the LOD 
score, is proportional to the square of a  normal variable, 
whereas the statistic  2,for the  nonparametric  method 
is a  standard  normal variable. To convert 2, to an 
“equivalent” LOD score LOD,, one could use the for- 
mula LODw = 1/2 ( logloe) (2,) 2 .  In general, we would 
recommend  that  both parametric and  nonparametric 

QTL mapping should be used, especially when there is 
evidence of nonnormality. If the results differ between 
the two approaches, the experiment should be inter- 
preted with considerable caution. 

The nonparametric  approach described here has 
been  incorporated in the QTL mapping package MAP- 
MAKER/ QTL (version 2 ) , available from the authors. 
With this modification, the package will allow robust 
mapping of  QTLs without concern  about  the precise 
distribution of the trait. 

We thank  NORMAN DRINKWATER for calling our  attention  to  the 
question of nonparametric statistics for QTL mapping  and  for com- 
ments  on  the manuscript. We thank WILLIAM DIETRICH for sharing 
the mapping  data  from the Mom-1 study. We thank DAVID SIEGMUND 
for  comments on the manuscript.  This work was supported  in  part 
by a grant from the National  Institutes of Health (HG00098) to 
E. S. L. 

LITERATURE CITED 

AHN, S., and S. D. TANKSLEY, 1993 Comparative linkage maps of the 
rice and maize genomes.  Proc. Natl. Acad. Sci. USA 90: 7980- 
7984. 

ALDOUS, D., 1989 Probability Approximations via the Poisson Clumpang 
Heuristic. Spinger-Verlag, New  York. 

ANDERSON, L., C. S. HALEY, H. ELLEGREN, S. A. KNOTT, M. JOHANSSON 
et al., 1994 Genetic mapping of quantitative  trait loci for growth 
and fatness in pigs. Science 263 1771-1774. 

BISHOP, M. D., S. M. KAPPES, J. W. KEEI.E, R. T. STONE, S. L.  SUNDEN 
et al., 1994 Agenetic linkage map for  cattle.  Genetics 136: 619- 
639. 

DIETRICH, W. F.,  H. KATZ, S. E. LINCOLN, H. SHIN, H. FRIEDMAN 
et al., 1992 A genetic map of the mouse suitable  for typing 
intraspecific crosses. Genetics 131: 423-447. 

DIETRICH, W. F., E. S. LANDER, J. S. SMITH, A. R. MOSER, K. A. GOULD 
et al., 1993 Genetic  identification of Mom-I, a  major  modifier 
locus affecting Min-induced intestinal  neoplasia in the mouse. 
Cell 75: 631-639. 

DIETRICH, W. F., J. C .  MILLER, R. G. STEEN, M. MERCHANT, D. DAMRON 
et al., 1994 A  genetic map of the mouse with 4,006 simple se- 
quence  length polymorphisms. Nat. Genet. 7: 220-245. 

DRINKWATER, N. R., and KLOTZ, J. H., 1981 Statistical methods for 
the analysis of tumor multiplicity data. Cancer Res. 41: 113-119. 

DUPUIS, J., 1994 Statistical problems associated with mapping com- 
plex and quantitative traits from genomic mismatch scanning 
data. Technical Report No. 2, Department of Statistics, Stanford 
University. 

FEINGOLD, E., P. 0. BROWN and D. SIEGMUND, 1993 Gaussian models 
for genetic  linkage analysis using complete high-resolution maps 
of identity by descent. Am. J. Hum.  Genet. 53: 234-251. 

FULKER, D. W., and L. R. CARDON, 1994 A sib-pair approach to 
interval mapping of quantitative  trait loci. Am. J. Hum. Genet. 

HALEY, C. S., S. A. KNOTT and J. M. ELSEN, 1994 Mapping  quantita- 
tive trait loci in crosses between outbred lines using least squares. 
Genetics 138: 1195-1207. 

HILBERT, P., K. LINDPAINTNER, J. S. BECKMANN, T. SERIKAWA, F. Sou- 
BRIER et al., 1991 Chromosomal mapping of two genetic loci 
associated with blood-pressure  regulation in hereditary  hyperten- 
sive rats. Nature 353: 521-529. 

JACOB, H. J., K. LINDPAINTNER, S. E.  LINCOLN, K. KUSUMI, R. K. BUN- 
KER et al., 1991 Genetic mapping of a gene causing  hyperten- 
sion in  the stroke-prone  spontaneously hypertensive rat. Cell 67: 
213-224. 

JANSEN, R. C., 1993 Interval mapping of multiple  quantitative  trait 
loci. Genetics 135: 205-211. 

JANSEN, R. C. ,  and P. STAM, 1994 High  resolution  of  quantitative 
traits into multiple  locivia nterval mapping. Genetics, 136: 1447- 
1455. 

54: 1092-1103. 



KENDALL, M., and A. STUART, 1979 The Advanced Theoy of Statistics 
Ed. 4. Charles Griffin, London. 

LANDER, E. S., and D. BOTSTEIN, 1989 Mapping mendelian factors 
underlying  quantitative traits using RFLP linkage maps. Genetics 

LEADBETTER,  M. R., G. LINDGREN and H. Rootzen, 1983 Extremes 
and Reluted  Properties of Random Sequences and Processes. Springer- 
Verlag, New  York. 

LINDGREN, B. W., 1968 Statistical Themy Ed. 2. Macmillan, New  York. 
Luo, Z. W., and M. J. Kearsey, 1992 Interval mapping of quantitative 

trait loci in  an F2 population. Heredity, 69: 236-242. 
MORENO-GONZALEZ, J., 1993 Efficiency of generations  for estimat- 

ing marker-associated QTL effects by multiple regression. Genet- 
ics 135: 223-231. 

MOSER, A.  R., W. F. DOVE, IC A. ROTH and J. I. Gordon, 1992 The 
Min (multiple intestinal neoplasia)  mutation: its effect on gut  
epithelial cell differentiation and interaction with a modifier 
system. J. Cell Biol. 116 1517-1526. 

PATERSON, A. H., E. S. LANDER, J. D. HEWTIT, S. PETERSON, S. E. 
LINCOLN et al., 1988 Resolution of quantitative traits into Men- 
delian  factors by using a complete linkage map of restriction 
fragment  length polymorphisms. Nature 335 721 -726. 

POSTLETHWAIT, J. H., S. L. JOHNSON, C. N. MIDSON, W. S. TALBOT, 
M. GATES et al., 1994 A genetic linkage map  for  the zebrafish. 
Science 264 699-703. 

RISE, M.  L., W. N. FRANKEL, J. M. COFFIN and  T. N. Seyfried, 1991 
Genes for epilepsy mapped in the mouse.  Science 253: 669-673. 

RODOLPHE, F., and M. Lefort, 1993 A multimarker model  for de- 
tecting chromosomal segments displaying QTL activity. Genetics 
134: 1277-1288. 

ROHRER, G. A., L. J. ALEXANDER, J. W. KEELE, T. P. SMITH and C. W. 
Beattie, 1994 A microsatellite linkage map of the  porcine ge- 
nome. Genetics 136: 231-245. 

SAX, IC, 1923 The association of size differences with seed-coat pat- 
tern  and  pigmentation  in Phaseolus vulgaris. Genetics 8: 552- 
560. 

SIEGMUND, D., 1985 Sequential Analysis: Tests and  Cmjidence Interuals. 
Springer, New  York. 

SOLLER, M., and T. Brody, 1976 On  the power of experimental 
designs for  the  detection of linkage between marker loci and 
quantitative loci in crosses between inbred lines. Theor. Appl. 
Genet. 47: 35-39. 

STUBER, C. W., S. E. LINCOLN, D. W. W o r n ,  T. HELENTJARIS and E. S. 
Lander, 1992 Identification of genetic factors contributing to 
heterosis in a hybrid from two elite maize inbred lines using 
molecular markers. Genetics 132: 823-839. 

TANKSLEY, S. D., M. W. GANAL, J. P. PRINCE, M. C. DE VICENTE, M. W. 
BONIERBALE et al., 1992 High density molecular  linkage  maps 
of the  tomato  and  potato genomes.  Genetics 132 1141-1160. 

TODD, J. A,, T. J.  AITMAN, R. J. CORNALL, S. GHOSH, J. R. HALL et al., 
1991 Genetic analysis of autoimmune type 1 diabetes mellitus 
in mice. Nature 351: 542-547. 

WRIGHT, S., 1968 Evolution and the  Genetics of Populations, Vol. I ,  
h e t i c  and Bzometn'cFoundations. University of  Chicago Press, Chi- 

ZENG, Z. B., 1993 Theoretical basis for separation  of  multiple  linked 
cago. 

gene effects in  mappping quantitative  trait loci. Proc. Natl. Acad. 
Sci. USA 90: 10972-10976. 

121: 185-199. 

Communicating editor: D. BOTSTEIN 

APPENDIX A 

We show here  that, under the null hypothesis that s 
is not linked to a QTL, Zw( s) has mean 0 and variance 
1 and is asymptotically normal as n -+ 03. That (Zw( s) ) 
= ( Y (  s ) )  = 0 follows from the definition of Yw( s) and 
the fact that rank( i) has expectation ( n + 1 ) / 2  and 
is independent of E [  x, ( s )  1 DATA] . That (Zw( s) ') = 1 
follows immediately from the Equation 2, in which 
ZW( s) is defined to be Yw( s) divided by its standard 
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deviation. That Zw( s) is asymptotically normal as n -+ 

m follows from the Central Limit Theorem, because 
Zw( s) is a sum  of independent  random variables  with 
finite variances and Zw ( s) has fixed mean and variance 
as n -+ 03 (see, e.g., LINDGREN 1968, section 2.5.2). 

The expectation E [  x, ( s )  I DATA] can be easily  calcu- 
lated for any position s given the genotypes at  the closest 
flanking markers. For a fixed individual i, let g(  s) de- 
note  the genotype at position s, let g~ denote  the geno- 
type at the closest informative marker on  the left and 
let g~ denote  the genotype at  the closest informative 
marker on  the  right. Let 8 denote  the recombination 
fraction between the two flanking markers, and let el 
and 0, denote  the recombination fractions between  po- 
sition s and  the left and right flanking markers, respec- 
tively. Note that s and 6 determine 8, and 0, and  that 
8 = 0, ( 1 - e,) + e2 ( 1 - e , ) .  It is straightforward to 
calculate the probability distribution of g(  s) given g~ 
and g~ as  follows: 

RL g R  R( s) p[R(s) I f f L R R ]  

From this table, it easy to compute  the expected value 
of x, ( s) given  any  value  of the  data (a, g R )  . Moreover, 
it is  easily calculated that ( E [  x, ( s )  I DATA] ) = 0 and 
( E [ x , ( s ) I D A T A I 2 )  = v ( e ,  el,  &),where 

Finally, the variance of Y ( s) is  given by 

(Yw(s)') = c. ( n  + 1 - 2 - rank(i))Z 
2 

X ( E [  xi ( s )  I DATA] ') 

APPENDIX B 

We  wish to show that Zw( s) is asymptotically distrib 
uted as a standard Ornstein-Uhlenbeck diffusion pro- 
cess. This Drocess  is an examde of a class  of stochastic 
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processes  known  as  Gaussian  processes. A stochastic 
process Y ( s) is Gaussian if for each k = 1,2,  - - - and 
for each xl < < - * Xk, the  random variables 
Y ( xl), Y ( +) , . . . , Y ( xk) are jointly normally distrib- 
uted.  In particular, Y ( x) must be normally distributed 
at any point x. The Ornstein-Uhlenbeck process is a 
Gaussian process with the  properties  that its mean is 
( Y  ( t )  ) = 0 and its correlation  function is ( Y  ( t )  Y ( s) ) 

A above that Zw( s) is normally distributed with mean 
0. The correlation function of Zw( s) satisfies the 
Ornstein-Uhlenbeck conditions with p = 2 because 
( x i  ( s) , xi ( t )  ) = under Haldane's  mapping func- 
tion (cf. APPENDIX A3 of LANDER and BOTSTEIN 1989). 
That Zw( tl ) , Zw( k) , . . . , Zw( tk )  is multivariate normal 
follows from the first two statements together with the 
fact that,  for tl < 4 < b ,  the genotypes g,  ( tl ) and gi ( t3 )  
are conditionally independent given gi ( 4)  (assuming 
no crossover interference). For the  other  one  degree 
of freedom statistics  discussed in the section on  other 
crosses, the  correlation functions still  satisfy the  Orn- 
stein-Uhlenbeck condition,  but now  with the different 
values  of p as  discussed in the text. 

The theory of extreme value distribution of the 

= e-81s-t l  . It has already been established in APPENDIX 

Ornstein-Uhlenbeck process has been well studied 
( LEADBETTER et al. 1983). Specifically, the probability 
that Zwexceeds a high value Tover an interval of length 
L can be approximated by a = ( 1 + p L T 2 )  P[ Z > T I ,  
where p [ Z  > TI is the tail probability of the  unit  normal 
(cf. FEINGOLD et al. 1993). Because maximum values 
of Zw on different chromosomes are  independent, 
Proposition 1 follows  by summing the  (small) false  posi- 
tive probabilities over the C chromosomes. We use 
P[ I Z I > TI because we assume a two-sided  test,  as 
discussed  above. 

A somewhat better approximation may be used to 
estimate the overall  false  positive probability when it is 
no longer  much less than 1 but  the probabilities for 
individual chromosomes are still much less than 1. This 
situation arises if a low threshold is chosen. Let a,  de- 
note  the above approximation for the  ith chromosome. 
Then the overall  false  positive rate a 1 - n ( 1 - ai) 
= 1 - n exp( - a i )  = 1 - exp ( -Eaj ) .  Note that Eai 
is just  the result in Proposition 1, which is recovered 
when a is small.  For example, in the mouse genome 
for a threshold of 3.0, Eai = 0.83, whereas 1 - 
exp( -Eai) = 0.56. For a threshold of 3.9, Eai = 0.049, 
whereas 1 - exp( -Ea,) = 0.047. 


