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ABSTRACT 
The  chi-square  model (also known as the gamma model with integer  shape  parameter) for the 

occurrence of crossovers  along a chromosome was first proposed in the 1940's as a description of 
interference  that was mathematically  tractable  but  without  biological  basis.  Recently,  the  chi-square 
model has been  reintroduced  into  the  literature from a biological  perspective. It arises as a result of 
certain  hypothesized  constraints  on the resolution of  randomly distributed crossover intermediates. In 
this paper under  the  assumption of no chromatid interference, the probability  for any single  spore or 
tetrad joint recombination  pattern is derived  under the chi-square  model.  The  method of maximum 
likelihood is then used to estimate  the  chi-square  parameter m and  genetic  distances  among  marker 
loci. We discuss how to interpret  the  goodnessof-fit  statistics  appropriately  when  there are some recombi- 
nation classes that have only a small number of observations.  Finally,  comparisons  are  made  between 
the  chi-square  model  and some other  tractable models in the  literature. 

C ROSSOVER interference  has  been observed  in 
almost  all  organisms  studied,  although  there is 

little  consistent  evidence of chromatid  interference 
even  within the  same  organism (ZHAO et al. 1995) . 
In what follows we assume no  chromatid  interfer- 
ence  (NCI) . 

Information on  the distribution of  crossovers along 
a chromosome generally comes from  genetic  experi- 
ments in which only recombinations, not crossovers, 
can actually be observed. In some organisms, such as 
Drosophila, the results of such experiments  are in the 
form of single spore data, in which the  products of a 
single meiosis are recovered separately. Other organ- 
isms, such as  yeast,  yield tetrad data, in which  all four 
meiotic products  are recovered together.  It is  easy to 
see that  there  are 2" distinct recombination  patterns 
for single spore  data involving n + 1 markers. For tetrad 
data involving n + 1 markers, n > 1, there  are  more 
than 3" distinguishable tetrad  patterns,  but under  the 
assumption of  NCI, there  are only 3 different probabil- 
ities among these patterns, i e . ,  some distinct tetrad pat- 
terns have the same probability of being observed. Each 
different probability corresponds to one of the types 
( ilil * * i n ) ,  where ii = 0, 1, 2 corresponds to parental 
ditype, tetratype and  nonparental ditype, respectively, 
between I] and li+l . 

Both single spore  data and tetrad  data  record recom- 
bination events among a set of markers. As the underly- 
ing crossovers occurring  during meiosis are  not directly 
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observable from the data, any model  about  interference 
must relate  the observable recombination or tetrad pat- 
terns to the underlying unobservable crossover events. 
Crossing over occurs among  four strands after each 
homologous  chromosome has duplicated. A model re- 
lating crossovers  to recombination  should specify the 
distribution of  crossover points along  the  bundle of 
four  chromatids and  the choice of nonsister chromatids 
to be involved in each crossover. 

The chi-square model for crossovers has a  long his- 
tory; see BAILEY (1961). MCPEEK and SPEED (1995) 
briefly  review the history and fit a  more  general class 
of models, renewal processes with gamma interarrivals, 
which includes the class  of chi-square models, to Dro- 
sophila data by maximum likelihood using a Monte 
Carlo method. Whereas it has generally been of interest 
due to its mathematical tractability, the chi-square 
model has also been suggested as a plausible biological 
model by Foss et al. (1993), motivated by observations 
from experiments on  gene conversion. There  the 
model is represented in the form Cx( Co) as follows: 
assume that crossover intermediates ( Cevents)  are ran- 
domly distributed  along  the four-strand bundle,  and 
every C event will either resolve  in a crossover ( Cx) or 
not ( Co) . When a C resolves  as a Cx, the  next m C's 
must resolve  as Co events, and after rn Co's the  next C 
must resolve as a Cx, i.e., the C's resolve  in a sequence 
- * Cx( Co) Cx( Co) m -  - . To make the process sta- 
tionary given a set of C events, the leftmost C has an 
equal  chance to be one of Cx( Co) m. In  their  paper  Foss 
et al. estimate the  parameter m in Cx( Co) from the 
observed ratio of Co to Cx. Here we perform a full 
maximum-likelihood estimation procedure to estimate 
m and genetic distances between markers from  both 
kinds of recombination  data. 
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ESTIMATION UNDER THE CHI-SQUARE MODEL 

Given a set of markers l1,  . . . , I,,, along a chromo- 
some, under the chi-square model Cx( Co) n + 1 pa- 
rameters need to be specified, namely, m and  the ge- 
netic distances between each consecutive pair of 
markers, x l ,  x2, . . . , x,, so that  the probability of each 
single spore or tetrad recombination pattern can be 
calculated. Suppose these parameters are given, let p = 
m + 1, y, = 2pxj and  let Dk ( y )  be the matrix whose i ,  jth 
entry is e-yypk+*-t/  ( p k  + j - i) !. Then  the probability of 
kj crossovers  between . I, and . l i + l ,  j = 1, * n,  is (see 
APPENDIX, Lemma) : 

1 
- lDk, ( J I  ) Dkp (y2  1 * - * Dk,, ( y n )  1 I ,  where P 

1 = (1 ,1 , .  . . , l ) .  

Note that when P = 1,  the above expression reduces 
to the Poisson  case, i .e.,  the no-interference model of 
HALDANE (1919). Using the above formula, we can cal- 
culate the probability of any  single spore or tetrad re- 
combination pattern ( i l i p  - * * in). We consider the two 
cases separately. 

For single spore  data, given two consecutive markers 
l j  and 1,+', we can observe a recombination or nonre- 

combination between them. If no crossovers occur be- 
tween I, and b + l ,  no strand in the  bundle will  show 
any recombination between these markers. MATHER 

(1935) proved that under  the assumption of NCI, if 
there  are k 2 1 crossovers  between two markers, then 
the probability that these two markers recombine on 
any  given single strand is  Recall that for single spore 
data any recombination pattern can be  represented as 
( i l i2 .  - * i n ) ,  where i, = 0 or 1. Define 

Nj = Do (yi) + ' 12  C Ds ( y j )  
5 2  1 

Rj = ' / 2  C Ds (yj) . 
\> 1 

Then the probability of recombination pattern 
( ilie - - - in) is (see APPENDIX, Theorem 1 ) 

1 
P( i l i 2 .  * in) = - 1MIM2. ""1 I ,  

P 
where Mj = Nj when 2; = 0, and Mj = Rj when 2; = 1. 

For tetrad  data recall that  there are three different 
possible tetrad  patterns between two markers. We let 
Po, p ,  and p,  denote  the probabilities of parental ditype, 
tetratype and  nonparental ditype, respectively,  between 
a fixed pair of markers. Given k 2 1 crossovers  between 
two loci, under  the assumption of NCI, the conditional 
probabilities p g ) ,  p i k )  and p i k )  of a  tetrad being of 
parental ditype, tetratype and nonparental ditype, re- 
spectively, are given by MATHER (1935) : 

pAk) = l/3 ( l/2 + ( - l/2 1 
p i k )  = z/:3(1 - ( - l / 2 )  k ,  

p i k )  = l/3 ( l/2 + ( - ' / 2 )  . 
We can calculate the probability of any tetrad  pattern 
( i l i 2 .  - - i n ) ,  where il = 0, 1 or 2. Define 

Pj = DO(y1) + C ' / 3 ( ' / 2  + ("/2)k)Ds(yl) 
$ 2 2  

Tj = Dl(rl)  + '/:3(1 - ( - 1 / 2 ) k ) D s ( ~ l )  
522 

Nj == C ' / ' ~ ( ~ / ' z  + ( - ' /z)k)Ds(yj) .  
,=2 

Then the probability of the  tetrad  pattern ( i l i 2 *  - i,) 
can be written as (see APPENDIX, Theorem 2 )  

1 
P(iIi2.  * . irL) = - 1M1M2. * *Mnl' ,  

P 
where Mj = Pj if il = 0, Mj = Tj if il = 1, and Mj = Nj 
if i, = 2. 

Given a set of single spore  or tetrad data and based 
upon  the above formulae,  the likelihood of the observa- 
tions, up to a constant factor, can be calculated in terms 
of the parameters as n P( i l i2 .  * * in)x ' l '~ i ." . ' , , ,  where 
x i , z 2 . .  is the observed frequency of single spores or 
tetrads with pattern ( i l i2  - - - i,) . The maximum likeli- 
hood estimates of the parameters are those that max- 
imize the likelihood among all  possible parameter val- 
ues. The numerical method used to find the maximum 
likelihood estimates used in our analysis  is the downhill 
simplex method, see  PRESS et al. (1988).  The standard 
error for each estimate is approximated using the fact 
that as n+ m ,  

&(e ln  - 0,) + N(O,  [ m I ; ' L  
where I (  0 )  is the Fisher information matrix. 

APPLICATIONS TO VARIOUS ORGANISMS 

In this section the Cx( Co)" model is fitted to data 
from various organisms via the  method of maximum 
likelihood. Data are of tetrad form except Drosophila 
melanogaster and  human recombination data  that  are of 
single spore type. 

Drosophila melanogaster: Many valuable recombina- 
tion datasets for this organism have appeared in the 
literature since it was first studied by geneticists early 
in this century. Among these, two large, well-known 
datasets, namely WEINSTEIN (1936)  and MORGAN et al. 
(1935), have  drawn much  attention  and have  fre- 
quently been used as a basis upon which to compare 
different models. 

Seven  loci that cover  most of the X-chromosome of 
D. melanogaster were  used  in WEINSTEIN'S study. A total 
of  28,239 offspring genotypes were determined. Among 
the CX( C O ) ~  models Cx( C O ) ~  fits the data best, i.e., the 



Chi-square  Model 

TABLE 1 

Observed  and expected counts  under the cX( Co)" model 

sc-e en, 

0 0  
1 0  
0 1  
0 0  
0 0  
0 0  
0 0  
1 1  
1 0  
1 0  
1 0  
1 0  
0 1  
0 1  
0 1  
0 1  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
1 1  
1 1  
1 1  
1 0  
1 0  
1 0  
1 0  
1 0  
0 1  
0 1  
0 1  
0 1  
0 0  
0 0  
0 0  
1 1  
1 1  

cv-ct ct-u u-g gf 

0 0 0 0  
0 0 0 0  
0 0 0 0  
1 0 0 0  
0 1 0 0  
0 0 1 0  
0 0 0 1  
0 0 0 0  
1 0 0 0  
0 1 0 0  
0 0 1 0  
0 0 0 1  
1 0 0 0  
0 1 0 0  
0 0 1 0  
0 0 0 1  
1 1 0 0  
1 0 1 0  
1 0 0 1  
0 1 1 0  
0 1 0 1  
0 0 1 1  
0 1 0 0  
0 1 0 0  
0 0 0 1  
1 0 1 0  
1 0 0 1  
0 1 1 0  
0 1 0 1  
0 0 1 1  
1 1 0 0  
0 1 1 0  
0 1 0 1  
0 0 1 1  
1 1 0 1  
1 0 1 1  
0 1 1 1  
1 1 0 0  
1 0 0 1  

Expected  Observed 

12934 12776 
1266 1407 
1909 201 8 
1831 1976 
3420 3378 
2454 2356 
2119 2067 

5 9 
34 16 

205  142 
240 198 
226  206 

8 11 
146 136 
280  261 
327  318 
33 42 

150 148 
258  212 
65 123 

252 315 
30  59 

0 3 
0 1 
1 2 
3 3 
5 3 
3 10 

14 15 
3 1 
0 1 
2 2 
9 10 
3 1 
2 5 
1 5 
0 1 
0 1 
0 1 

Cx( Co)' gives the best fit among Cz( Co) models.  The  esti- 
mated  genetic  distances  and  their  standard  errors  between 
these  markers  are 7.13 2 0.14,9.55 -C 0.17,8.28 2 0.16,  14.75 
? 0.20, 11.45 2 0.18 and 11.47 2 0.19 cM. 0, no recombina- 
tion; 1, recombination.  The  estimated P value is <0.001. Data 
of WEINSTEIN (1936). 

largest likelihood is achieved when the Cx( Co) model 
is used. The estimated genetic distances and their asso- 
ciated standard  errors  are given in Table 1. The optimal 
m = 4, estimated here by statistical  analysis, is the same 
as that in F O ~ S  et al. (1993), where they determine 
m from the observed proportion of gene conversions 
associated with  crossovers. 

MORGAN et uL's dataset also contains markers on  the 
X-chromosome  of Drosophila. There  are 16,136 obser- 
vations on nine loci  in this dataset, including six of  the 
same loci  as in WEINSTEIN ( 1936) . The Cx( C O ) ~  model 

for  Interference 

TABLE 2 

Estimated  genetic  distances with standard  errors 
under the cX( C O ) ~  model 
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Distance 
Interval ( C M )  SE 

sc-e 
en, 
cv-ct 
ct-u 
WS 

S-f 
f c a  
ca-b 

5.13 
9.83 
7.49 

13.29 
8.42 

15.55 
7.47 
4.42 

0.17 
0.23 
0.20 
0.26 
0.21 
0.28 
0.20 
0.16 

Cx( CO)~ model  gives  the  best f i t  among Cx(Xo)= models. 
The  estimated P value is <0.001. Data of MORGAN et al. 
(1935). 

again gives the best fit to the  data  among  the Cx( Co)" 
class. The results are given in Table 2. MCPEEK and 
SPEED (1995) fit a  broader class of models, in  which m 
is  allowed to  be  noninteger,  to  the MORGAN et al. dataset 
and estimated m = 3.94,  which agrees very  well  with the 
integer value m = 4. 

Among the loci that  appear in both datasets, the ge- 
netic distances estimated from the two different datasets 
appear  rather similar, yet the differences are large com- 
pared to the  standard errors. This difference probably 
reflects nonhomogeneity across Drosophila individuals. 
It is well  known that recombination values are different 
for different individuals and can be affected by factors 
such as temperature ( PERKINS 1962) . However,  in the 
Cx( Co) model we assume that  the crossover process 
follows the same distribution across the whole popula- 
tion. Thus, it is not surprising that we underestimate 
the variation in genetic distances. 

NeUrosjmra crmsa: PERKINS (1962) contains data in- 
volving  six markers on  the right arm of linkage group 
I in N. uussu. PERKINS' data were gathered from six 
different experiments. This set of data was previously 
analyzed by COBBS ( 1978)  and RISCH and LANCE 
(1983). In his paper PERKINS observes that  there  are 
significant differences between recombination values 
for offspring from different parents and from the same 
set of parents when the  temperature is varied. We esti- 
mated the  interference  parameter m for each experi- 
ment separately and also for  the  data when  all  six exper- 
iments are  combined.  In all  cases the best model is 
Cx( Co)" which  has  less  crossover interference  than 
Cx ( Co) 4 .  This suggests  crossover interference is weaker 
in Neurospora than in Drosophila. The results are given 
in Table 3. 

There is another large multilocus Neurospora dataset 
in STRICKLAND ( 1961 ) . He accumulated data from four 
experiments involving four markers at  the end of the 
right arm of linkage group V. A total of  10,269  com- 
pletely analyzable  asci  were recovered. We fit the 
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TABLE 3 

Observed  and expected counts  under the Cx( Co)‘ model 

cr-th th-ni ni-uu au-ni ni-os Expected Observed 

0 
1 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
0 

0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
2 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
0 
0 
0 
1 
1 
1 
0 
1 
1 
0 
1 

0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
2 
1 
1 
0 
1 
0 
0 
1 
1 
0 
1 
1 
0 
1 
1 
1 
1 
1 

0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
1 
0 
1 
1 
1 
0 
1 
1 

0 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
1 
1 
0 
0 
1 
0 
1 
1 
0 
1 
1 
1 
0 
1 
1 
1 

106 103 
57 65 

189 201 
109 108 
74 52 

141 126 
26  19 
32 24 
27  32 
61 79 
3 5 

41 36 
50 40 

152 188 
0 1 
8 15 

52  47 
19 22 
4 2 
6 8 

20 14 
2 5 

15 10 
7 6 
2 7 

19 18 
13 11 
2 2 
0 1 
2 1 
0 1 
1 3 

Cx( Co)’ gives the best fit among Cx( Co) models. The esti- 
mated genetic distances with standard  errors between these 
markers are 10.66 (0.59), 22.78 (0.82), 11.81 (0.60), 8.57 
(0.55) and 21.69 (0.80) cM. 0, parental ditype; 1, tetratype; 
2, nonparental ditype. The estimated P value is 0.69. Data of 
PERKINS (1962). 

Cx ( Co) model to the  data from each of the  four exper- 
iments separately, and  the Cx( CO)~ model gives the 
highest likelihood in  all  cases. The results are summa- 
rized in Table 4. As in the case  of the Drosophila data, 
some of the estimated genetic distances are significantly 
different from one experiment to another. 

BOLE-GOWDA et al. ( 1962) consider seven markers on 
linkage group I of Neurospora crassa, three on the left 
arm and four on the  right  arm. Altogether 2920  off- 
spring were observed. When all markers are used  in the 
analysis, the best model turns out to be Cx, i .e.,  m is 
estimated as zero. This estimate is inconsistent with the 
estimates from the  data of PERKINS (1962)  and STRICK- 
LAND (1961). This discrepancy might be due to the 
fact that no positive interference was observed  across 
the  centromere,  and in that case the chi-square model 
may not be applicable to data which span the centro- 
mere. 

The estimated m = 2 for Neurospora is consistent 
with the observation of the ratio of gene conversions to 
crossovers  as described in Foss et al. ( 1993). Moreover, 
from the fact that Cx( C O ) ~  is the best Cx( Co) ” model 
for data from both linkage groups I and V, we might 
suspect that  the  degree of interference is similar  within 
the  entire Neurospora genome  but with no interference 
across the  centromere. 

Saccharomyces cerevisiae: There  are  abundant two- 
point cross data for S. cereuisiae, but,  perhaps because 
of the high frequency of gene conversion, published 
multilocus tetrad data  are  rare. We analyze  two-point 
cross data from a series of papers by MORTIMER and 
HAWTHORNE (1960,  1966,1968, 19’73). They  were ana- 
lyzed by SNOW (1979) using the model proposed by 
BARRATT et al. ( 1954). In BARRATT’S model, there is 
a  parameter k that measures the  degree of  crossover 
interference, similar to the role m plays  in the Cx( Co) ’’’ 
model. (For a full description, see BARRATT et al. 1954.) 
k = 1 implies no interference, whereas k > 1 and k 
< 1 correspond to  negative and positive interference, 
respectively. We  say that  there is positive (negative) 
interference if the probability of double recombina- 
tions in two intervals is less (bigger) than  the  product 
of the probabilities of recombination in each interval, 
ie., interference is defined  through  a quantity called S:3 
by Foss et al. (1993) . SNOW fits BARRATT et al.’s model 
to tetrad  data involving  34 pairs of markers on 12 chro- 
mosomes in S. cueuisiae. SNOW’S results, along with our 
estimated optimal m, genetic distances and associated 
standard  errors from the Cx( Co)” model, are given  in 
Table 5. 

Professor J. HABER kindly provided us  with a multilo- 

TABLE 4 

Estimated  genetic  distances with standard  errors  and  estimated P values 

Experiment 1 Experiment 2 Experiment 3 Experiment 4 

histl-inos 4.33 (0.33) 7.07 (0.40) 6.50 (0.35) 5.40 (0.29) 
inos-bis 4.97 (0.36) 5.27 (0.35) 6.02 (0.36) 6.23 (0.32) 
bis-pab2 10.1 (0.47) 9.18 (0.45) 10.7 (0.45) 10.6 (0.40) 
P value 0.50 0.02 0.02 0.13 

Cx( CO)~ is the best model among Cx( Co) models for all four experiments. Data of STRICKLAND (1961). 
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TABLE 5 

Data of S. cereuiSiae analyzed in SNOW (1979) 

Chromosome  Gene  pair m n x x 2  SE P X ,  k 
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3 

4 

5 

6 
7 

2 cyhl-gall 

lys2-try1 

SUP45-lyS2 

gall-lys2 

tryl-his7 

SUP45-tyrl 
his4-mat1 
his4-h2 
h2-mat1 
matl-thr4 
thr4-MAL2 
SUP35-arol 

hid-trp2 
ura3-hom3 
SUP1 I-his2 
trp5ade6 
ade5-tyr3 
try3-lys5 
cyh2-trp5 
h l - a d e 6  
MAL 1 - d e 3  

thrl-CUP1 
CUPl-petl 

tql-cdc2 

8 petl-CWl 

9 his6lysl 
10  SUP4-sw7 
11 met1  4-met1 

metl-MAL4 
15 serl  -ade2 

ade2-qh4 
pet1 7-ade2 

17 met29ha2 
pet2-pha2 

1 
2 
3 
5 
2 
0 
2 
1 
1 
1 
2 
5 
1 
2 
5 
1 
0 
1 
0 
3 
2 
1 
3 
3 
3 
1 
2 
1 
1 
4 
1 
2 
2 
1 

146 
383 
335 
127 
104 
105 
278 
521 
48  1 
434 
286 
101 
205 
215 
206 
105 
106 
166 
162 
160 
507 
138 
232 
486 
240 
41 1 
179 
109 
133 
210 
236 
232 
146 
151 

19.9 
52.7 
34.8 
42.2 
25.7 
17.4 
39.8 
17.4 
35.8 
21.3 
29.2 
46.1 
18.2 
24.5 
34.7 
22.0 
82.1 
73.3 
8.0 

44.8 
34.3 
52.0 
46.7 
24.4 
36.0 
47.1 
53.1 
46.2 
28.0 
27.4 
33.9 
48.8 
36.8 
50.7 

2.6 
3.5 
1.9 
3.5 
3.1 
3.4 
2.8 
1.2 
2.2 
1.6 
2.2 
7.5 
2.1 
2.2 
2.3 
3.2 
4.9 

1.7 
3.9 
1.8 
6.4 
3.4 
1.3 
2.6 
3.3 
5.4 
6.1 
3.4 
2.0 
3.0 
3.9 
3.5 
5.9 

10. 

0.98 
0.71 
0.77 
0.90 
0.89 
0.64 
0.77 
0.85 
0.73 
0.90 
0.82 
0.99 
0.92 
0.79 
0.99 
0.97 
0.62 
0.87 
0.89 
0.88 
0.89 
0.78 
0.80 
0.96 
0.98 
0.55 
0.78 
0.96 
0.70 
0.98 
0.78 
0.79 
0.75 
0.93 

23.0 
79.5 
50.0 
70.5 
32.7 
17.4 
56.3 
19.8 
44.6 
24.8 
38.2 
80.9 
20.8 
30.8 
53.2 
25.6 
83.3 

101. 
0.80 

70.5 
46.7 
68.5 
74.7 
31.8 
52.4 
61.1 
80.1 
59.7 
33.5 
37.5 
41.9 
72.8 
50.6 
66.4 

0.337 
0.488 
0.245 
0.194 
0.258 
1.817 
0.294 
0.370 
0.429 
0.404 
0.294 
0.204 
0.284 
0.277 
0.115 
0.386 
1.333 
0.764 
2.355 
0.265 
0.271 
0.495 
0.271 
0.112 
0.210 
0.461 
0.498 
0.545 
0.633 
0.098 
0.397 
0.367 
0.386 
0.551 

m, estimated m in the Cx( C O ) ~  model; n, sample  size; ~ 2 ,  estimated  genetic  distance from the Cx( Co)" 
model; SE, standard  error  for the estimated  genetic  distance; p ,  estimated  Pvalue; x,, estimated genetic distance 
in SNOW (1979); k, estimated k in BARRATT et aL's model in SNOW (1979). 

cus S. cerevisiae dataset involving the five markers, metl3, 
qh2, tq5,  q h 3  and leul on chromosome VII. The mark- 
ers met13, qh2, t q 5  and leul were used in three of the 
14 experiments, and metl3, tq5 ,  q h 3  and leul were 
used in the  other 11 experiments. We grouped  the  data 
across the  experiments having the same set of markers 
and fitted chi-square models. Cx( CO)~ gives the best fit 
to the  data from crosses  involving metl3, qh2, tq5 ,  qh3 
and leul; however, the best model for  the  other  group 
is CxCo. The estimated Pvalues  are 0.48 and 0.89,  re- 
spectively. 

Genetic experiments (Foss et al. 1993) have  shown 
that in S. cerevisiae the  ratio of gene conversions to cross- 
overs is -2, so we might  expect  the model Cx(  Co)' to 
fit best. From Table 5 and results for HABER'S data, we 
can see that unlike Drosophila and  Neurospora, where 
the optimal m does  not  change from one  experiment 
to another, in Saccharomyces the optimal m varies for 

different pairs of genes even  within the same chromo- 
some. With such a small sample size (usually -200), it 
may be  that  there is simply not sufficient information 
to clearly distinguish between different Cx(  Co) mod- 
els. In these Saccharomyces  crosses the differences be- 
tween the likelihoods under different Cx ( Co) models 
are usually  small.  For example, for the second group 
in IIABER's data,  the -log( 1ikelihood)'s  are  rather 
close for different m's: they are 125.6, 125.3,  125.1, 
125.2 and 125.3 for m is 4, 5, 6, 7 and 8, respectively. 
A high rate of conversions might also create  a  problem 
here. Instead of looking for the optimal m, we could 
take the Cx(  Co)' model as our hypothesis and test if it 
is consistent with the  data we have. 

Schizosaccharonyces pmbe:  We analyze data from two 
different sources: those analyzed by SNOW (1979) that 
were from KOHLI et al. (1977)  and those provided by 
Dr. P. MUNZ (personal  communication). Two-point 
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TABLE 6 

Data of S. pombe analyzed in SNOW (1979) 

Chromosome Gene pair m n X,P SE P X, k 

2 

3 

1 qhl-cdcl 
CdCl-leu2 
h i s l - h Z  
sup3-aro3 
uraZ-ade2 
ade2-ade4 
lys3-ural 
ural-lys5 
pro1  -ade3 
ade3-pro2 
ade7-ura5 
ade7-his3 
glul-his3 
his3-mat1 
ts124-mat1 
leul-his5 
his5-ku3 
adel-his4 
his4-trpl 
ade8-arg4 
adel0-furl 
adel  0-ade6 
furl-sin2 
furl-min5 
ade6-min5 
tsl5-argl 
argl   -add 
argl-aro4 
trp3-aro4 
add-wee1 

1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
5 
1 
0 
0 
0 

142 
124 
102 
170 
364 
290 
692 
131 
100 
589 
556 
392 
212 
728 
45 1 
371 
100 
498 
128 
185 
142 
202 
206 
199 
337 
48 

157 
67 

126 
67 

58.0 
51.7 
11.5 
75.1 
35.8 

19.9 
38.4 
49.6 
96.9 
12.3 
69.5 
66.8 
80.1 
96.2 
28.2 
62.1 
42.5 

31.3 
17.6 
31.8 
25.4 
22.4 
4.5 
5.16 
6.14 

122. 

109. 

56.3 
19.7 
69.1 

7.5 
7.0 
2.7 

3.1 

1.4 
5.5 
8.1 
8.5 
1 .o 
6.1 
8.0 
6.0 
9.8 
2.5 

3.0 

10. 

20. 

11. 

23. 
4.0 
3.0 
3.8 
3.1 
2.9 
0.8 
7.3 
7.8 

3.4 
12. 

15. 

0.75 77.7 
0.73 67.7 
0.22 11.5 
0.56 76.2 
0.75 35.7 
0.72 121. 
0.17 19.9 
0.63 32.8 
0.92 49.7 
0.94 96.7 
0.94 13.4 
0.72 69.8 
0.81 66.5 
0.49 111. 
0.48 97.6 
0.91 28.2 
0.94 61.8 
0.48 42.7 
0.75 111. 
0.87 31.2 
0.70 17.5 
0.98 31.7 
0.90 25.3 
0.85 22.4 
0.05 4.4 
0.98 42.3 
0.99 82.7 
0.34 58.0 
0.90 19.6 
0.85 68.5 

0.545 
0.698 
4.691 
1.350 
0.888 
0.869 
1.771 
0.716 
1.087 
0.985 
0.229 
1.117 
0.91 1 
0.837 
1.261 
0.951 
0.921 
1.249 
1.227 
0.894 
0.581 
0.974 
0.892 
1.177 
7.693 
0.302 
0.645 
2.523 
1.151 
0.850 

Symbols in this table are  the same as those of Table 5. 

cross tetrad  data on 30 pairs of markers from all three 
S. pombe chromosomes were  analyzed by SNOW. Here 
we fit the Cx( Co) model to all the  data analyzed by 
SNOW. The results are given  in Table 6. Overall, among 
the class of Cx( Co) models, the best fitting model is 
the Cx model (where m = 0 )  , which is equivalent to 
the no-interference model of HALDANE (1919). This 
suggests that  there is no positive  crossover interference 
in S. pombe. Recall that in BARRAII”S model k > 1 corre- 
sponds to negative interference so the fact that  the esti- 
mated k in BARRATT’S model is sometimes >1 suggests 
that  there may be negative  crossover interference in 
S. pornbe. Among the Cx( Co) models slight negative 
interference may occur at large distances, but  at  near 
distances interference  cannot be negative.  However, the 
class  of Cx( Co) models can be extended to allow for 
negative interference. Instead of assuming that  the dis- 
tance between two crossovers is a x 2  distribution, one 
may assume it is a gamma distribution of  which the x* 
is a special case. It is proved in KARLIN and  LIBERMAN 
( 1983)  that when the gamma shape parameter is t l ,  
the model thus  proposed has negative interference. 
However, there is no explicit expression for any single 

spore or tetrad recombination pattern unless the shape 
parameter is an  integer. One way to overcome this  dif- 
ficulty  would be to use the simulation method  that is 
described by MCPEEK and SPEED (1995). 

A multilocus S. pombe dataset was kindly provided by 
Dr. P. MUNZ, who  used  seven markers (uru, his, tps, h, 
leu, ude, 4 s )  in his experiment with sample size  458. As 
for the two-point  cross data  mentioned above, the Cx 
model, i e . ,  the no-interference model, fits the  data best. 
The estimated Pvalue is 0.23. All the  data suggest that 
there is no positive  crossover interference in S. pornbe, 
although  there may be negative interference. 

Aspergillus niduhns: STRICKLAND (1958) published 
1231  fully  classifiable  asci  of A. niduluns from three 
separate experiments. Crosses number 1 and 3 cover 
the same three intervals  in the  right arm of the BZchro- 
mosome, whereas cross 2 covers  six  intervals (the same 
three in the right arm, two in the left arm and the sixth 
spanning  the centromere).  The data from the first two 
experiments  are fitted by the chi-square model. As in 
the case of S. pornbe, the Cx model fits the data best. 
There appears to be no positive  crossover interference 
present in this organism. 
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TABLE 7 

Observed  and expected counts  under  the C x (  Co)' model 

Expected  Observed  Expected  Observed 
Crossovers (male) (male) (female) (female) 

0 206 196 123 130 
1 115 131 102 93 
2 11 4 20  20 
3 0 1 1 3 

When m is assumed to be the same for  both male and 
female, Cx( Go)' gives the best fit. Data of McINNIS et al. ( 1  993). 

Humans: For humans  there  are  not yet  available data 
of the quality and large sample size one finds for  experi- 
mental organisms. We have  analyzed data from 
Mc INNIS et al. ( 1993 ) consisting of the  number of  cross- 
overs inferred over a region of -60 cM in each of  664 
meioses. We estimate m = 2 overall, but when males 
and females are  considered separately, we estimate m 
= 1 for females and m = 4  for males. The results when 
male and female  are assumed to have the same interfer- 
ence  parameter m are given in Table 7. 

THE  INTERPRETATION  OF  GOODNESS-OF-FIT 
STATISTICS 

As multiple recombination  tends to be rare,  there 
are many possible multilocus recombination events that 
each  occur only a small number of times in  the datasets 
considered  here. As a result the asymptotic x' distribu- 
tion of a test statistic such as Pearson's chi-square statis- 
tic or the likelihood ratio statistic may not be a  good 
approximation to the actual distribution. There  are two 
ways to get around with this difficulty: by using a Monte 
Carlo method to approximate the distribution or by 
grouping some classes  with  small expected  counts to- 
gether to form a bigger class. Suppose the sample size 
is N ,  the  model is of the form f (e , ,  . . . , e,), and  the 
test statistic for the sample is T. A Monte Carlo approxi- 
mation can be carried out as  follows: (1) Estimate pa- 
rameters e,, . . . , 8, in the  model by the  method of 
maximum likelihood, ( 2 )  generate N observations ac- 
cording to the  distribution f ( a , ,  . . . , 8,) and calculate 
the test statistic t, for this sample and ( 3 )  repeat  step 
2 M times, then  the P value  of T can be estimated as 
the  proportion of times when ti is bigger than T. 

We did  a simulation study to explore which  test  statis- 
tic should be used and whether  grouping small  cells 
gives a  more powerful test when both  the hypothesis 
and alternative are of the Cx( Co) form. The simula- 
tion is carried out as  follows. Suppose  there  are five 
equally spaced markers on  the chromosome with ge- 
netic distance 10 cM between each consecutive pair of 
markers. The null hypothesis is that  the crossover pro- 
cess  follows the Cx( Co) m model;  the alternative is that 
crossover process follows the Cx( Co) model, k # m. A 
sample of  size 500 is generated from the alternative 

TABLE 8 

Power comparison  between  grouped  and  ungrouped  tests 

X - '/2 0 ' 1 2  1 5/2  

Ungrouped test 
a = 0.01 0.020 0.010 0.001 0.001 0.003 
a = 0.05 0.099 0.055 0.021 0.014 0.014 
a = 0.10 0.200 0.121 0.060 0.039 0.041 

a = 0.01 0.045 0.042 0.037 0.031 0.019 
a = 0.05 0.144 0.139 0.127 0.124 0.107 
a = 0.10 0.223 0.221 0.217 0.213 0.196 

Grouped  test 

Simulated  data  are  generated from the Cx( C O ) ~  model then 
tested  against  the  hypothesis  that the data  are  from  the 
Cx( Co)' model.  Different X's correspond to different  test sta- 
tistics in power  divergence family. a is the significance level 
at which the  test is carried out. 

model. The hypothesis model is used to fit the simu- 
lated  data, and  the  Pvalue of the test statistic is calcu- 
lated by the Monte Carlo approximation as described 
above. Two thousand such samples are  generated,  and 
the  Pvalues  are calculated. For a levela test we reject 
the null hypothesis if the calculated Pvalue is <a. The 
power of the test thus can be  approximated by the  per- 
centage of times that  the null hypothesis is rejected. 
For each dataset several  test  statistics from the so-called 
power divergence family (READ and CRESSIE 1988)  are 
used. The test  statistics in this family  have the form 

This family includes several  well-known  test  statistics. 
For example, X = 1 gives Pearson's chi-square statistic, 
and X = 0 gives the log-likelihood ratio test statistic. For 
each sample each test is applied on  both  ungrouped 
and  grouped classes. Grouping is done in such a way 
that all offspring types  with more  than  three recombina- 
tions are  put  together to form  a larger class, whereas 
the other types are  kept  separate. Two pairs of null and 
alternative hypotheses are  considered. In both cases the 
null hypothesis is set to be the  model Cx( Co)'. The 
alternative is Cx( Co) in the first pair and CxCo in the 
second pair. The results are summarized in Table 8 and 
Table 9. 

From Tables 8 and 9 we can see that on average tests 
based on  grouped  data  are  more powerful than those 
based on  the original classes, and  the power varies more 
among  different test  statistics when the  ungrouped 
classes are used. For tests based on  grouped classes, 
there  are no big differences between the power of dif- 
ferent test  statistics.  Actually, when the  data  are 
grouped, x2 is a  good  approximation to the real distri- 
bution of  all  test  statistics, so they are very similar to 
each other. We think the reason is that large classes are 
more informative than small  classes. Tests of goodness- 
of-fit should give more weight to these larger classes. 
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TABLE 9 

Power  comparison  between  grouped  and  ungrouped  tests 

x 0 l/2 1 :’/2 

Ungrouped test 
a = 0.01 0.009 0.086 0.123 0.077 0.048 
a = 0.05 0.069 0.213 0.278 0.235 0.017 
a = 0.10 0.139 0.321 0.407 0.393 0.308 

a = 0.01 0.099 0.111 0.115 0.115 0.125 
a = 0.05 0.250 0.254 0.251 0.256 0.271 
a = 0.10 0.359 0.363 0.366 0.372 0.379 

Simulated data are generated from the CxCo model  then 
tested against the hypothesis that the  data  are from the 
Cx( Co)‘ model. 

Grouped test 

COMPARISON WITH THE MODEL OF GOLDGAR 
AND  FAIN 

A thorough comparison of different models is made 
by MCPEEK and SPEED ( 1995) . In this section we focus 
on  the comparison of the Cx(  Co) model with a  model 
proposed by GOLDGAR and FAIN ( 1988). In  that  model, 
which  is similar to  the count-location model (KARLIN 

and  LIBERMAN 1979 and RISCH and LANGE 1979), 
GOLDGAR and FAIN ( 1988) assume that  the  number of 
crossovers  follows a  distribution  that has to be estimated 
from  the  data.  Their  model differs from the count-loca- 
tion model  in two respects: (1) given the  number of 
crossovers, their locations are not  independent,  but 
they  follow a specified joint distribution in which some 
parameters have to be estimated; ( 2 ) instead of putting 
the distribution on  the four-strand bundle, these distri- 
butions  are put  on  the single meiotic product, i.e., it is 
a two-strand model.  In fact, it is not possible to construct 
a four-strand NCI model  that is consistent with their 
model on a single meiotic product  (see D. GOLDSTEIN, 
H. ZHAO and  T. P. SPEED unpublished results). In their 
paper GOLDGAR and FAIN show that  their  model fits 
data  much  better  than  the count-location model and 
several  two-strand models based on  map functions. Esti- 
mates of genetic distances among markers from 
WEINSTEIN’S and MORGAN’S data by their  model 
( GOLDGAR and FAIN 1988) , as  well  as the estimates 
based on  the Cx( Co) model,  are given in Table 10 
and Table 11. 

Besides genetic distances the  parameters used by 

TABLE 

md M. S. McPeek 

GOLDGAR and FAIN are as  follows: d j ,  i = 0, 1, 2 and 3, 
the probabilities of 0 ,1 ,2  and 3 crossovers,  respectively; 
k ,  which measures the  degree of interference, and q,, 
the  genetic distance between the  centromere  and  the 
marker closest to it. So when n + 1 markers are involved 
in the  experiment,  a total of n + 5 parameters have to 
be estimated. On  the  other  hand for the Cx( Co) ’” 
model, n + 1 parameters  are used, including n genetic 
distances between each pair of consecutive markers and 
the  parameter m that measures interference.  Thus, in 
general,  four fewer parameters  are  needed for the 
Cx( Co) ‘‘ model  than for GOI.DGAR and FAIN’S model. 
For some organisms it is reasonable to assume there 
are  no more  than  three crossovers.  For example,  among 
28,239 offspring in MORGAN’S D. melunoguster data, only 
two offspring showed recombination in four intervals 
at  the same time, and  no such individual was recorded 
in WEINSTEIN’S  data. On  the  other  hand for those organ- 
isms that have a large number of crossovers during mei- 
osis, e.g., S .  pombe, probabilities of 4, 5 or even more 
crossovers on  the four-strand bundle must be estimated 
when GOLDGAR and FAIN’S  model is used. One should 
also  specify the  joint distribution of these crossover  loca- 
tions. In  this  case the model loses its simplicity and 
credibility when many joint distributions must be as- 
sumed based on empirical observations. 

A good  model  should  both fit the  data and be biologi- 
cally reasonable. Recall that crossovers occur  among 
four-chromatid  strands, so under the assumption of no 
chromatid  interference, we can relate the probabilities 
of  crossover patterns on the four-strand bundle  and 
those on a single strand.  Under GOLDGAR and FAIN’S 
model when the probabilities of crossover patterns on 
a single strand  are specified, some crossover patterns on 
the four-strand bundle will have  negative probabilities 
under  the assumption of  NCI. Thus,  the  model they 
describe is incompatible with the assumption of NCI. 
We tried a variation of GOLDGAR and FAIN’S model in 
which we put  the distribution on  the four-strand bundle 
instead of on  a single strand.  Under  the assumption of 
NCI, we derived the probability of each recombination 
pattern for single spore  data. This slightly modified ver- 
sion of GOLDGAR and FAIN’S model fits the Drosophila 
data as  well  as the original one. 

Coincidence  curves: The traditional measure of in- 
terference is coincidence ( STUKTEVANT 1915; MULLER 

10 

Comparison with GOLDGAR and FAIN’S model (WEINSTEIN’S data) 
~ 

Interval sc-ec ec-cL, cv-ct ct-v v-g R-f LR 

GOLDGAR and FAIN 7.2 9.9 8.6  15.0  11.4 11.4 132.4 
C.x( Co) 7.1 9.6 8.3 14.8 11.5  11.5  219.1 

Estimated genetic distances based on GOLDGAR and FAIN’S  model and the CX(CO)~ model,  together with 
likelihood ratio statistics (LR). 
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TABLE 11 

Comparison with GOLDGAR and FAIN’S model (MORGAN’S data) 

Interval sc-ec ec-cv cv-ct  ct-u V-S s-f f-ca ca-b LR 

GOLDGAR and FAIN 5.2 10.1 7.8 13.5 8.3 15.7  7.3  4.5 159.5 
Cx( CO) 5.1 9.8 7.5 13.3 8.4 15.6 7.5 4.4 174.8 

Estimated genetic distances based on GOLDGAR and FAIN’S model and the CX(CO)~ model,  together with likelihood ratio 
statistics (LR). 

1916), which is expressed as a  ratio. The  numerator is 
the  chance of simultaneous  recombination across both 
of two disjoint intervals on  the chromosome. The de- 
nominator is the  product of the marginal probabilities 
of recombination across the intervals. 

TI 1 S =  
( q n  + ~ 1 1 )  + ~ 1 1 )  ’ 

where S is the  coincidence and rq is the  chance of i 
recombinations across the first interval and j recombi- 
nations across the second interval. The coincidence 
curve for  a  model is a  plot of the  coincidence against 
the  genetic distance between two intervals, where the 
widths of the two intervals are taken to be infinitesimal. 
(Foss et al. call this quantity S4.) Foss et al. (1993) 
compare the coincidence curves ( S) for  the Cx( Co) 
model with empirical coincidence curves estimated 
from  data. They find  that  the theoretical curves are very 
close to the empirical ones. Similarly, we draw the S 
curves based on  the modified version of GOLDGAR and 
FAIN’S model  (Figure 1 ) . In GOLDGAR and FAIN’S model 

S is not only a  function of the  genetic distance between 
the two regions under study but also depends  on how 
far these regions are from the  centromere, so the S 
curve cannot be uniquely drawn on  the  graph. Instead, 
for  a given genetic distance between two regions, S can 
vary according to the distance to the  centromere.  It is 
clear from  the  graph  that GOLDGAR and FAIN’S model 
predicts that Swill be >1.5 when the distance between 
the two regions is bigger than 60 cM, no matter where 
they are located on  the chromosome. But this predic- 
tion is not consistent with the empirical results in which 
S is  always smaller than 1.2. 

DISCUSSION 

Based on  the derived probabilities for each single 
spore or tetrad  recombination  pattern, we use the 
method of maximum likelihood to fit the Cx( Co) 
model to a variety  of organisms. The estimated m’s 
based on statistical  analyses of D. melanogaster and N. 
CTUSSU data  agree with those given by Foss et al. ( 1993) , 
where m was estimated by the ratio of gene conversions 

I I I I I -~T 

0.0 0.2 0.4 0.6 0.8 1 .o 

Genetic  Distance 

FIGURE 1.-Comparison between predicted and observed Svalues for GOLDGAR and FAIN’S model.  The dots above any given 
genetic distance represent the range of possible predicted S values, which vary according to location on the chromosome. 0, 
the observed S value. 
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to crossovers in  genetic  experiments. In humans we are 
currently  able to provide only a preliminary estimate of 
m, although we hope  that  more extensive human data- 
sets will soon become available. Whereas some amount 
of  positive interference is shown in the above organ- 
isms, it is not present in two other organisms we ana- 
lyzed, S. pombe and A.  nidulans. 

The m estimated  from different experiments using 
genes on different chromosomes within the same  organ- 
ism turn out to be rather similar. This implies that as a 
measure of interference, m does not change across  differ- 
ent chromosomes, thus, the degree of interference might 
be determined by factors  specific  to each organism. 

We have discussed how to interpret  the  goodnessof- 
fit test statistic appropriately after  fitting  a  model to a 
multilocus dataset.  In multilocus data because many 
single spore  or  tetrad  recombination  patterns have 
rather small expected  numbers of observations, even in 
an  experiment of moderate size, the x' approximation 
to  goodness-of-fit  statistics often fails.  Two ways of 
avoiding this difficulty are  proposed: ( 1 ) simulating the 
distribution of the test statistic by a Monte Carlo 
method  or ( 2 )  grouping small  classes into  a larger class. 
Our simulation study  shows that  the tests based on 
grouped classes  usually  have larger power than  the tests 
based on  ungrouped classes. 

Among the four-strand models considered here, the 
four-strand version of the model of GOLDGAR and FAIN 
(1988) gave the smallest likelihood ratio statistics (see 
Table 10 and Table 11 ) , but considering that this model 
has four more parameters than the chi-square model, 
the difference in likelihood ratio statistics is not  impres 
sive. The count-location model has two parameters more 
than  the chi-square model, yet  it performed worse. In 
comparing the Cx( Co) '' model with the count-location 
model and GOLDGAR and  FAIN'S model, we consider that 
a good model should not only  yield a small  test  statistic 
but should also be parsimonious ( i . e . ,  have  few parame- 
ters), biologically reasonable and generalizable to many 
organisms. In these respects the Cx( Co) model seems 
superior. It has a biological  basis and is computationally 
tractable. Because of  its  simple structure, it can be  ap- 
plied to a broad range of organisms. 

Although the Cx ( Co) '' model discussed in this paper 
applies well to data of different organisms and gives 
some insight into  the underlying crossover process, 
there is a  lot of room left for  improvement. First of all, 
the  parameter m need  not  be restricted to be an  integer, 
but when m is not an  integer,  there  are  no explicit 
expressions for  the probabilities of single spore or tet- 
rad  recombination  patterns.  In this case M. S. MCPEEK 
and  T. P. SPEED (unpublished  results) use a simulation 
method to estimate the  parameters.  Second, we might 
suspect that  the amount of interference varies in differ- 
ent regions within the same chromosome. A local m 
rather than  a global m might be fitted in the model. 
Finally, for some organisms with a high proportion  of 

conversion data observed, we need to develop a  model 
to include  both  gene conversions and crossovers. A 
good  model of this kind should  help us understand 
more  about  the crossing-over process. 

The no-interference  model is  widely used in human 
genome  mapping. Although it has been shown by SPEED 
et al. ( 1992)  that  the  no-interference  model is asymptot- 
ically robust  for  gene  ordering, we do lose some effi- 
ciency in ordering  and in excluding a test locus when 
there is interference in the underlying crossover pro- 
cess. D. GOLDSTEIN, H. ZHAO and T. P. SPEED (unpub- 
lished results) study the loss in efficiency using the  no- 
interference  model when the actual crossover process 
follows the Cx ( Co) model. They find that  the  number 
of gametes required  for these tasks is 10-50% smaller 
for  the Cx( Co) '" model  than for the no interference 
model,  depending  on  the  degree of interference and 
the distances between the markers. 
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APPENDIX 

Lemma: Under  the Cx( Co) model  the probability 
of kj crossovers between J j  and . I,,, , j = 1, . . . , n is 

1 

P 
-lDk,(yl)Dk~(~)."D~(~,)l', 

where p = m + 1, y, = 2p3 and Dk(y) has i, j th entry 

Proof: We start with the simplest case when there  are 
only two markers. Because the C events are randomly 
distributed on  the four-strand  bundle and  the  number 
of  C's  follows the Poisson distribution with parameter, 
say y, the  chance of s C's is e-yy'/ s!. 1 /pof these C's  will 
resolve  as crossover event, and  under  the assumption of 
no chromatid interference, each strand has chance 
'/2 of being involved in each crossover. So on average 
each  strand has ~/2pcrossovers, given s Cevents. Recall 
that  the  genetic distance is defined to be the  expected 
number of crossovers on a single strand, so the  genetic 
distance x and  the Poisson parameter y are  related by 
x = y/2p,  i.e., y = 2px. 

In the following discussion suppose markers fl, . J 2 ,  

. . . , I, are laid out from left to right, and  the Cevents 
occur also from left to right. The Cx( Co) model as- 

e-YyPk+l-z / ( p k  + j - 2) !. 

sumes that  the crossover intermediate ( C) events re- 
solve in sequence like CxCoCo- * * CoCxCo- - - and  that 
the process is stationary, so the first Cevent to the  right 
of has an  equal  chance of resolving  as  any of the m 
+ 1  elements of  Cx( Co) m. The occurrence of k cross- 
overs between JI and J2 might be the result of p' 
possible situations, depending  on  the  number of Co's 
before  the first Cx to right of . I l  and  the  number of 
Co's between . J2 and  the nearest Cx left to it. The num- 
ber can vary from 0 to p - 1. Therefore,  the  chance of 
kl Cx's between l1 and J2 can be  computed as 

The case i = 1 corresponds  to the situation  where the 
leftmost C between . J1 and 1' is a Cx, and the rightmost 
C could  be either one Cx (pkl - p + 1 C's altogether 
between II and J 2 )  , the first Co after a Cx ( pkl - p + 2 
C's) or the second Co after a Cx, etc. i - 1 corresponds  to 
the number of Co's between l1 and the first Cx. 

We can write the sum in a matrix product  form: 

Each element in the first column of the matrix corre- 
sponds to the last C event between I ,  and l2 being a 
Cx; the  second  column  corresponds to the last C being 
the first Co after the k,th Cx, the j th column to the j th 
Cafter  the klth Cx. Therefore,  the sum of the j th ( j  > 
0 )  column multiplied by l / p  is the probability that 
there  are kl crossovers between . II and J p ,  and  the last 
C event is the ( j - 1 ) th Co after the k ,  th Cx. Therefore 
if  we define 

then pi, is the probability that  the last C between I ,  
and l 2  is the ( j - 1 ) th Co after the k ,  th Cx with the 
exception  that $I:, is the probability of the last C being 
the klth Cx. 

Now  we consider  the case for three markers . I ] ,  l2 
and . Is .  Given that  the first Cto  the  right of l2 is the  lth 
Co after a Cx, the probability of h2 crossovers between J, 
and J3 is 

The chance  that  there  are I Co's between J2 and  the 
first Cx after f2  is the same as the  chance that the last 
Cbetween II and . l2 is the ( p  - 1 - 1 ) t h  Cafter  a Cx 
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which is p$,"'. Therefore  the  chance of k1 crossovers 
between 1 1 ,  .,f2, and k2 crossovers  between l2 and 

13 is 

Rewriting the above relation in matrix form, we get 

Recall that (Pi l  92, * - - Pg,) = ( 1  1 * * 1 )  
Dk, ( y l )  , thus  the probability of kl crossovers between 

f l  and . f B ,  k2 crossovers between . l2 and . f3 is 

lDk~(yl )Dlc~(yZ) l ' .  

The general result involving ?z intervals can be proved 

Theorem 1: Define 
by the same method. 

Nj = Do(.~j) + ' / 2  C Ds(y1) 7 

7 2  1 

Rj == '12 C Ds(yj) 9 

s z  1 

then  the  probability of recombination  pattern 
( i l i2 .  * in) is 

1 
P(ili2.  . * i n )  = - 1MLM2. * .M,,l', 

P 
where Mj = Nj when 4 = 0 ,  and Mj = Rj when 4 = 1. 

Proof: It is  well  known that given k 2 1 crossovers 
between two markers, the chance of a recombination on 
a single strand is 1/2, and  there can be no recombination 
if no crossovers occur. We can write Phk) for  the proba- 
bility of no recombination and $I$') for the probability 
of recombination given k crossovers occurring. So 
pho) = 1, p i o )  = 0 and pjk )  = $ik) = when k 2 1.  
Write P'(~;$:..injk~~) for the probability of observing 
recombination pattern ( i l i 2  - - * in) when there  are kj 
crossovers  in the jth interval, j = 1, 2, . . . , n. Then we 
have 

x Dk2(p>) a ' p!,".'Dk,(yn) 1 '  
k, 1 

1 

P 
= - lMlM2.  .Mnl I .  

Theorem 2: Define 

Pj = D O ( J ~ )  + C ' / 3 ( ' / 2  + ( - 1 / 2 ) k ) D s ( ~ J )  
S 2 2  

Tj = Dl(rj) + C '/3(1 - (-1/2)k)Ds(ylJi) 
5 2  2 

Nj = C ' / ~ ( ~ / 2  + ( - ' / ~ ) ~ ) D s ( y j ) .  
,= 2 

Then  the probability of tetrad  pattern ( i l i 2  - * - 2 % )  

can be written as 

1 P(i l i2 '  * i n )  = - 1MIM2. *Mnl ' ,  
P 

where Mj = Pj if il = 0,  Mj = Tj if zi = 1, and Mj = Nj 
if 4 = 2. 

Proof: Notice that given k 2 1 crossovers  between 
two markers, the probabilities of parental ditype, tet- 
ratype and  nonparental ditype are '/3 ( ' / 2  + ( - '1'2) ') , 
*/3 ( 1 - ( - ') and ( 1/2 + ( - 1/2) k ) ,  respectively. 
Using the same method as Theorem 1, the conclusion 
follows. 


