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Abstract

We present the baseline regularization model for computational drug repurposing using
electronic health records (EHRs). In EHRs, drug prescriptions of various drugs are recorded
throughout time for various patients. In the same time, numeric physical measurements (e.g.
fasting blood sugar level) are also recorded. Baseline regularization uses statistical relation-
ships between the occurrences of prescriptions of some particular drugs and the increase or the
decrease in the values of some particular numeric physical measurements to identify potential
repurposing opportunities.
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Baseline Regularization for Drug Repurposing

1 Introduction
With the increasing availability of electronic health record (EHR) data, there is an emerging inter-
est in using EHRs from various patients for computational drug repurposing (CDR). Specifically,
in EHRs, drug prescriptions of various drugs are recorded throughout time for various patients.
In the same time, numeric physical measurements, such as fasting blood sugar (FBG) level, blood
pressure, and low density lipoprotein are also recorded. By designing machine learning algorithms
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that can establish relationships between the occurrences of prescriptions of some particular drugs
and the increase or the decrease in the values of some particular numeric physical measurements,
we might be able to identify drugs that can be potentially repurposed to control certain numeric
physical measurements. This chapter describes such a machine learning algorithm called baseline
regularization [12] for CDR.

Time/Day
Patient 1

Time/Day
Patient 2

Event Type FBG Drug 1 Drug 2

FBG=120mg/dL

FBG=140mg/dL

FBG=80mg/dL

Figure 1: Visualization of electronic health records (EHRs) from two patients. Fasting blood sugar
(FBG) level measurements as well as drug prescriptions of various drugs are observed for the two
patients over time.

2 Materials
Figure 1 visualizes a set of electronic health records from two patients. Drug prescriptions of
different types enter the EHRs of the two patients at different times. Fasting blood sugar (FBG)
level measurements are also recorded at various times. In this chapter, we will consider how to
identify drugs that can be potentially repurposed to control FBG level as an example to illustrate
the use of baseline regularization. The idea is to formulate this problem as a machine learning
problem by considering an FBG record as a response variable and using the drug prescriptions
that occur before the FBG record as features to predict the value of the FBG record. If through
the predictive model we notice that the prescription of a particular drug is associated with the
decrease of FBG, then we can consider this drug as a potential candidate to be repurposed for
glucose control. It should be noticed that while we are using FBG level control as an example for
the ease of presentation, the proposed algorithm can also be used to identify drugs that can be
potentially repurposed to control other numeric physical measurements.

2.1 Notation

Without loss of generality, we assume that only drug prescription records and FBG records are
available for each patient. And we consider only patients with at least one FBG record throughout
their observations. Let there be N patients and p drugs under consideration in total. Suppose
that for the ith patient, there are ni drug prescription records and mi FBG records in total, where
i ∈ {1, 2, . . . , N}. We can use a 2-tuple (xij, tij) to represent the jth drug prescription record of
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Figure 2: Dyadic influence functions for S = 512 and L = 6.

the ith patient, where j ∈ {1, 2, . . . , ni}, xij ∈ {1, 2, . . . , p} represents which drug among the p
drugs is prescribed, and tij represents the timestamp of the drug prescription. Similarly, we can
also use a 2-tuple (yik, τik) to represent the kth FBG measurement record from the ith patient,
where k ∈ {1, 2, . . . ,mi}, yik denotes the value of the FBG measurement, and τik represents the
measurement timestamp. Note that given i, ti1 ≤ ti2 ≤ · · · ≤ tini

and τi1 ≤ τi2 ≤ · · · ≤ τini
. In

this way, we can represent the EHR of each patient as a set of the aforementioned 2-tuples.

3 Methods
We first present how the potential influence of various drugs over time on the value of FBG
measurements can be ascertained via the use of dyadic influence functions, directly from raw EHR
data. We then present our baseline regularization model that combines the effects of time-varying
patient-specific baselines and the effects from various drugs throughout time to predict FBG levels
for CDR.

3.1 Dyadic Influence

We assume that drug prescriptions in the EHR of a patient have certain influences on the val-
ues of the FBG measurements that occur after the prescriptions. Since drug prescriptions occur
throughout time for various patients, given an FBG measurement record, an intuition is that a
drug prescription record that occurs long before has less effect, if any, on the value of the FBG
measurement in question, compared with a more recent drug prescription occurrence. Based on
this intuition, for tij ≤ τik, we represent the effect of a drug prescription (xij, tij) on an FBG
measurement (yik, τik) through a weighted sum of a pre-defined set of dyadic influence functions
{φl(·)}L−1l=0 [3]. Specifically, let S > 0 and L ∈ N+ be given. For l ∈ {0, 1, 2, . . . , L− 1}, we define

αl ,

{
2L−1/S, l = 0

2L−l/S, l = 1, 2, . . . , L− 1
;
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and the half-closed-half-open intervals,

Il ,

{
[0, 1/αl), l = 0

[1/αl, 2/αl), l = 1, 2, . . . , L− 1
.

Then we define
φl(δ) , αlI(δ ∈ Il),

where δ = τik− tij is the time difference between the drug prescription and the FBG measurement,
and I(·) is the indicator function. Note that these φl(·)’s all integrate to one and are orthogonal
to one another.

Figure 2.1 visualizes the set of dyadic influence functions when S = 512 and L = 6. As can be
seen, when the time difference between two events δ increases, the influence decays in exponential
order. For δ ≥ S, the previous drug prescription is assumed not to have any influence on the value
of the FBG measurement in question. Dyadic influence functions provide a flexible approach to
ascertain influences of various drug prescriptions in the past on the value of FBG measurement
records. This is in contrast to the drug era construction that is prevalent in the pharmacovigilance
literature [15, 21, 20, 14], where ad-hoc heuristics are used to generate a consecutive time period
during which the value of an FBG measurement is assumed to be under unattenuated influence.

3.2 Baseline Regularization

Baseline regularization assumes that an observed FBG value is due to the influences of various
drug prescriptions that occur in the past as well as a hidden, intrinsic baseline FBG value that
represents the FBG level that would have been observed if the patient were not under any other
influences. Specifically, baseline regularization considers solving the optimization problem in (1):

b̂, β̂ , arg min
b,β

1

2M

N∑
i=1

mi∑
k=1

(
yik − bik −

ni∑
j=1

p∑
q=1

L−1∑
l=0

βqlφl(τik − tij) · I(xij = q)

)2

+λ1

N∑
i=1

mi−1∑
k=1

∣∣bik − bi(k+1)

∣∣+ λ2‖β‖1,

(1)

where M =
∑N

i=1mi is the total number of FBG measurements under consideration, λ1 > 0 and
λ2 > 0 are regularization parameters, and

b ,
[
b11 b12 · · · b1m1 · · · bN1 bN2 · · · bNmN

]> and

β ,
[
β10 b11 · · · β1(L−1) · · · βp0 βp1 · · · βp(L−1)

]>
are the parameters that we need to estimate. The baseline regularization problem is a regularized
least square problem with a fused lasso penalty (controlled by λ1) and a lasso penalty (controlled
by λ2).

The parameter b is a baseline parameter vector whose components represent the potentially
different baseline FBG levels throughout time for different patients. Such time-varying and patient
specific baselines are of great importance to provide flexibility to describe the intricate data gener-
ation process in reality. For example, diabetic patients tend to have higher FBG levels compared
to a healthy person. Therefore, the fact that the baselines used are patient-specific helps to model
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such heterogeneity among different individuals in the data. Even for a particular patient, the FBG
levels can also change dramatically over the years as the patient ages. Therefore, the time-varying
nature of the baseline parameters also helps to capture the heterogeneity of the FBG levels over
time. The baseline parameter b is regularized by a fused lasso penalty, without which b is flexible
enough to explain any given FBG level observations. The intuition of using a fused lasso penalty
is to minimize the difference between two adjacent baseline parameters. Since baseline parameters
represent the FBG values that would have been observed if the patient were not under other in-
fluences, it is reasonable to assume that these baseline values are usually relatively stable over a
certain period of time, and hence we encourage such stability via the use of fused lasso penalties.

The parameter β represents the effects of every drug on the value of the FBG level depending
on the time difference between the drug prescription and the FBG measurement. A lasso penalty
is used to encourage sparsity over the effect parameter β as we assume that only a small portion of
drugs can have some effect on the value of an FBG measurement during a certain period of time.

The least square objective is hence to minimize the differences between the observed FBG values
and the values given by the model that take into consideration both the time-varying patient-
specific baseline parameters that change stably and the sparse effect parameters that describe
effects of various drugs during various periods of time.

For the qth drug, let
{
β̂q0, β̂q1, β̂q2, . . . , β̂q(L−1)

}
be the set of effects learned from the baseline

regularization model. We measure the overall effect of oq on the FBG level as the average of the
elements in the set: oq , 1

L

∑L−1
l=0 β̂ql.

Algorithm 1 Baseline Regularization
Require: y, Z, D, λ1,and λ2.
Ensure: b̂ and β̂.
1: Initialize β(0).
2: u← 0.
3: while true do
4: y̌(u+1) ← y − Zβ(u).
5: b(u+1) ← arg minb

1
2M
‖y̌(u+1) − b‖22 + λ1‖Db‖1. . b-step

6: ỹ(u+1) ← y − b(u+1).
7: β(u+1) ← arg minβ

1
2M
‖ỹ(u+1) − Zβ‖22 + λ2‖β‖1. . β-step

8: if Stopping criteria met then
9: b̂← b(u+1) and β̂ ← β(u+1).

10: return b̂ and β̂.
11: else
12: u← u+ 1.
13: end if
14: end while

3.3 Optimization for Baseline Regularization

The baseline regularization problem in (1) is a convex optimization problem. Furthermore, b and
β are separable in the optimization problem. Therefore, we can perform a blockwise minimization
procedure that alternates between the minimization of b and β to achieve optimality [25]. When
b is fixed, the optimization problem with respect to β is a lasso linear regression problem [22].
When β is fixed, the optimization problem with respect to b is a blockwise fused lasso signal
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approximator problem [24]. Both problems can be solved efficiently. The blockwise minimization
algorithm is summarized in Algorithm 1. To see the two subproblems, let

ziql ,
ni∑
j=1

φl(τik − tij) · I(xij = q).

Then (1) can be rewritten as:

b̂, β̂ , arg min
b,β

1

2M
‖y − b− Zβ‖22 + λ1‖Db‖1 + λ2‖β‖1, (2)

where
y ,

[
y11 y12 · · · y1m1 · · · yN1 yN2 · · · yNmN

]>
,

Z is an M × (p× L) data matrix whose ith row is:[
zi10 zi11 · · · zi1(L−1) · · · zip0 zip1 · · · zip(L−1)

]
,

and D is the blockwise first difference matrix:

D ,


Dm1

Dm2

. . .
DmN

 ,
with an (m− 1)×m first difference matrix defined as D1 = 0 and:

Dm ,


−1 1

−1 1
. . .
−1 1

 .
Therefore, from (2), when β is fixed, let y̌ , y − Zβ; then the blockwise fused lasso signal
approximator problem with respect to b is:

arg min
b

1

2M
‖y̌ − b‖22 + λ1‖Db‖1.

On the other hand, from (2), when b is fixed, let ỹ , y−b, then the lasso linear regression problem
with respect to β is:

arg min
β

1

2M
‖ỹ − Zβ‖22 + λ2‖β‖1. (3)

In Algorithm 1 the two most computationally-intensive steps are Step 5 and Step 7. The former
involves solving a fused lasso signal approximator problem, whose solution can be computed exactly
by the dynamic programming algorithm proposed in [11]. The latter involves solving a lasso linear
regression problem, which is achieved by the cyclic coordinate descent algorithm with variable
screening proposed in [9] and [23].
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Table 1: Top Thirty Drugs Selected by Baseline Regularization Associated with FBG Decrease
INDX CODE DRUG NAME SCORE

1 4132 GLUCOPHAGE -82.388
2 7470 PIOGLITAZONE HCL -36.869
3 8437 ROSIGLITAZONE MALEATE -29.046
4 5786 METFORMIN -18.867
5 4184 GLYBURIDE -16.664
6 6382 NEEDLES INSULIN DISPOSABLE -15.233
7 5787 METFORMIN HCL -9.910
8 4806 INSULIN GLARGINE HUM.REC.ANLOG -8.523
9 4497 HUM INSULIN NPH/REG INSULIN HM -7.336
10 160 ACTOS -6.006
11 7768 PREMARIN -4.879
12 4106 GLIMEPIRIDE -4.028
13 6656 NPH HUMAN INSULIN ISOPHANE -3.613
14 4971 ISOSORBIDE MONONITRATE -3.229
15 4561 HYDROCORTISONE -3.084
16 4107 GLIPIZIDE -3.007
17 9379 THIAMINE HCL -2.968
18 1573 CAPTOPRIL -2.871
19 5368 LIPITOR -2.819
20 9152 SYRING W-NDL DISP INSUL 0.5ML -2.380
21 1988 CIPROFLOXACIN HCL -2.367
22 3937 FOSINOPRIL SODIUM -2.252
23 5390 LISINOPRIL -2.004
24 9994 VERAPAMIL HCL -1.965
25 1216 BLOOD SUGAR DIAGNOSTIC -1.900
26 7760 PREGABALIN -1.708
27 6803 ONDANSETRON HCL -1.678
28 4970 ISOSORBIDE DINITRATE -1.575
29 6540 NITROGLYCERIN -1.496
30 5571 MAGNESIUM -1.266
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4 Results
To demonstrate the utility of baseline regularization, we run our algorithm on the Marshfield Clinic
EHR to identify drugs that can be potentially used to control FBG level. We consider patients
with at least one FBG measurement throughout their observations. This leads to a total number
of 333,907 FBG measurements from 75,146 patients.

To ascertain influences from drug prescriptions, we choose S to be half a year and L = 5 for
the dyadic influence function. We only consider drugs that have at least one drug prescription that
is at most S amount of time prior to the occurrence of at least one FBG measurement, yielding a
total number of 5147 different drugs for consideration. λ1 and λ2 are chosen such that roughly 200
drugs will be selected eventually by the model. This is because we do not know in advance whether
the drugs returned by the algorithm could potentially control FBG level or not, and we need to
examine the findings of the algorithm manually. Therefore, the regularization parameters need to
be carefully chosen so that the number of drugs selected by the model can be feasibly examined.
Table 1 reports the top thirty drugs ranked by their overall effects among the 180 drugs generated
by the baseline regularization using λ1 = 86 and λ2 = 2.841977 × 10−4. For more information
about choosing the regularization parameters, please see Section 5.

As shown in Table 1, the drugs in green are drugs that are prescribed to control blood sugar
level. The drugs in white are not normally used to control blood sugar level. However, there
might be some potentially interesting findings based on a literature review. For example, thiamine
HCL is reported to reduce the adverse effect of hyperglycemia by inhibiting certain biological
pathways [27], and deficiency of thiamine is observed in diabetic patients [17]. Ciprofloxacin
HCL could lead to hypoglycemia, according to the medication guide from the Food and Drug
Administration (FDA) [5]. Lisinopril is also associated with hypoglycemia, according to the drug
label from the FDA [7]. Verapamil HCL is reported to decrease blood sugar level as well as to
have some hope in preventing pancreatic β cell loss. Such a loss is considered a pathological
characteristic for diabetes [18]. Cases of hypoglycemia associated with the use of pregabalin have
been reported [1, 19]. Premarin, fosinopril sodium, and hydrocortisone are potential false positives
for our method, since they have been linked to hyperglycemia [4]. Drugs with mixed evidence are
also found. For example, according to [4], both Lipitor and captopril are linked to hyperglycemia.
Studies that suggest otherwise are also seen in the literature [6, 10, 16].

The baseline regularization algorithm is implemented with R. The blockwise fused lasso signal
approximator problem is solved using a subroutine in the R package glmgen [2]. The lasso linear
regression problem is solved using the R package glmnet [8].

5 Notes

5.1 Splitting Patient Records

In (1), we try to control the differences between two adjacent baseline parameters via the use
of the fused lasso penalty. Consider the pair bik and bi(k+1) that indicates the baseline FBG
levels corresponding to two adjacent physical measurements. Although the two measurements are
adjacent to each other in time, the actual time difference between the two measurements could
be large, i.e. τik � τi(k+1). In this case, it might not be reasonable any more to regularize the
difference between the two baselines as the FBG level could go through substantial changes during
such a long period of time. Therefore, we consider splitting the records from the same patient into
various subsets within which the records are close to each other in time, and just regularize the
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differences between adjacent baselines within the same subset. It remains to determine how far
apart two adjacent records should be for us to consider them belonging to distinct subsets. We take
a data-driven approach to determine this threshold. In detail, we compute the time differences of
all adjacent pairs of FBG measurements for all patients. We then use Tukey’s method of outlier
identification [26] to determine the smallest outlier. The distribution of the differences is heavy-
tailed, and most of the differences are small. Therefore, the smallest outlier is a relatively large time
difference value, and we set this value as our threshold. After splitting the FBG records of a patient
into various subsets, each subset of FBG records can be considered as data from an independent
patient. Therefore, the previously established formulation of the baseline regularization model can
be naturally extended to handle this situation by simply modifying D in (2) accordingly. The
threshold value identified in our dataset is 4.1 years.

5.2 Model Selection

Since in CDR, we do not know a priori what drugs returned by the algorithm can actually de-
crease or increase FBG levels, we manually review the drug list to identify potential repurposing
opportunities. Therefore, model selection for baseline regularization not only needs to identify a
model that explains the data well but also needs to generate a drug list of moderate size so that
subsequent reviewing efforts are feasible.

To determine an appropriate λ1, we start from identifying the minimum λ∗1 such that all the
baseline parameters are fused to its average in the following fused lasso signal approximator prob-
lem, where we only use the baseline parameter b to model the FBG measurements y:

arg min
b

1

2M
‖y − b‖22 + λ1‖Db‖1.

Define Tm as an m×m upper triangular matrix whose upper part and the diagonal are all ones,
and whose entries are otherwise zeros. Then according to [28],

λ∗1 = max
i∈{1,2,...,N}

‖Tmi
(yi − ȳi1mi

)‖∞, (4)

where 1m is an m× 1 vector of all ones, and ȳi is the mean of all the FBG measurements from the
ith patient. Upon the determination of λ∗1 in (4), we can choose λ1 = γλ∗1, where γ ∈ (0, 1) can
vary to generate different models. The results reported in Table 1 are given by λ1 = 0.05λ∗1.

To determine an appropriate λ2, we first solve for the pathwise solution to a continuous self-
controlled case series (CSCCS) problem [13], which is a lasso linear regression problem assuming
a fixed baseline parameter for each patient:

arg min
β

1

2M
‖y −Uȳ − (X−UZ̄)β‖22 + λ2‖β‖1,

where

U ,


1m1

1m2

. . .
1mN

 , ȳ , (U>U)−1U>y, Z̄ , (U>U)−1U>Z.

In our experiments, we are aiming at selecting about 200 drugs in the end. Therefore, from
the solution path, we choose an λ2 whose solution selects about 250 drugs and we use this λ2
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for the baseline regularization problem. The solution to the CSCCS problem can also be used
to initialize β(0) in baseline regularization in Algorithm 1. Given the same λ2, we notice that
the baseline regularization problem usually will select fewer drugs compared to the corresponding
CSCCS problem. Intuitively, this is because the introduction of time-varying and patient-specific
baseline parameters in the baseline regularization problem help to explain the changes in the FBG
measurements better. Therefore, fewer drugs are needed in order to explain the changes of FBG
levels in the dataset, yielding a sparser drug effect parameterization.

When multiple configurations of λ1’s and λ2’s are provided, we can use Akaike information
criterion (AIC) or Bayesian information criterion (BIC) for model selection. The degree of freedom
of the baseline regularization model needed in the calculation is the summation of the degree of
freedom of the baseline parameter b and the degree of freedom of the drug effect parameter β.
The former is the total number of piecewise constant segments of b and the latter is the number
of nonzero entries of β.

Since the dimension of the parameterization in baseline regularization is larger than the sample
size of the data, caution needs to be paid when we choose regularization parameters. Essentially,
we would like to choose large λ1 and λ2 to impose strong regularization to avoid overfitting. The
degree of freedom of the learned model also needs to be monitored and controlled so that it is
smaller than the sample size of the data.

5.3 Stopping Criteria

Since the baseline regularization problem is a convex optimization problem, we can verify the con-
vergence of the optimization procedure in Algorithm 1 by checking the violation of the Karush–Kuhn–Tucker
(KKT) conditions of the current iterate. Since when β(u) is given, the update to b(u+1) can be
carried out exactly by Step 4 and Step 5 of Algorithm 1, we are interested in knowing the violation
due to b(u+1) and β(u) via the KKT conditions of (3):

s(u) =
1

nλ2
Z>
(
y − b(u+1) − Zβ(u)

)
,

where s(u) is the subgradient of ‖β‖1. If b(u+1) and β(u) are optimal, then

ŝd


= 1, β

(u)
d > 0

= −1, β
(u)
d < 0

∈ [−1, 1], β
(u)
d = 0

, (5)

where ŝd and β(u)
d are the dth components of ŝ and β(u), respectively. By measuring how much s(u)

violates the specification of ŝ in (5) via ‖v(u)‖2, where the dth component of v(u) is

v
(u)
d ,


s
(u)
d − 1, β

(u)
d > 0

s
(u)
d + 1, β

(u)
d < 0

max {0, |sud | − 1} , β
(u)
d = 0

,

we know about how far away the current solution is to optimality. Such a measurement can be
used as a stopping criterion. In our experiment, we set ‖v(u)‖2 ≤ 0.01 as our stopping criterion.
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6 Conclusion
We have presented an algorithm to predict the effects of drugs on numeric physical measurements
in the EHR such as fasting blood glucose. Drugs with a strong effect to decrease the measurement
are potential repurposing targets. Our method inherits from self-controlled case series [13] the
ability to take into account inter-patient variation. By addition of a time-varying baseline it can
also address intra-patient variation over time. And by use of dyadic influence functions it can
avoid the need to decide drug eras and can model different effect times for different drugs.

Acknowledgement
The authors would like to gratefully acknowledge the NIH BD2K Initiative grant U54 AI117924,
the NIGMS grant 2RO1 GM097618, NIH CTSA at UW-Madison 1UL1TR002373, NSF grant
CCF-1418976, and ARO grant W911NF-17-1-0357.

References
[1] M. ABE, S. NAKAMURA, T. HIGA, J. OKUBO, and M. KAKINOHANA. Frequent hy-

poglycemia after prescription of pregabalin in a patient with painful diabetic neuropathy.
Journal of Japan Society of Pain Clinicians, advpub, 2015. doi: 10.11321/jjspc.14-0035.

[2] T. Arnold, V. Sadhanala, and R. J. Tibshirani. glmgen: Fast generalized lasso solver, 2014.

[3] Y. Bao, Z. Kuang, P. Peissig, D. Page, and R. Willett. Hawkes process modeling of adverse
drug reactions with longitudinal observational data. In Machine Learning for Healthcare
Conference, pages 177–190, 2017.

[4] DiabetesInControl. Drugs that can affect blood glucose levels. http://www.
diabetesincontrol.com/wp-content/uploads/2010/07/www.diabetesincontrol.com_
images_tools_druglistaffectingbloodglucose.pdf, 2015. (Visited on 03/12/2018).

[5] FDA. Cipro medication guide. https://www.fda.gov/downloads/Drugs/DrugSafety/
UCM088572.pdf, . (Visited on 03/12/2018).

[6] FDA. Lipitor (atorvastatin calcium) tablets. https://www.accessdata.fda.gov/
drugsatfda_docs/label/2009/020702s057lbl.pdf, . (Visited on 03/12/2018).

[7] FDA. Zestril (lisinopril) label. https://www.accessdata.fda.gov/drugsatfda_docs/
label/2009/019777s054lbl.pdf, . (Visited on 03/12/2018).

[8] J. Friedman, T. Hastie, and R. Tibshirani. glmnet: Lasso and elastic-net regularized general-
ized linear models. R package version, 1(4), 2009.

[9] J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models
via coordinate descent. Journal of statistical software, 33(1):1, 2010.

[10] E. Girardin and D. Raccah. Interaction between converting enzyme inhibitors and hypo-
glycemic sulfonamides or insulin. Presse medicale (Paris, France: 1983), 27(37):1914–1923,
1998.

11

http://www.diabetesincontrol.com/wp-content/uploads/2010/07/www.diabetesincontrol.com_images_tools_druglistaffectingbloodglucose.pdf
http://www.diabetesincontrol.com/wp-content/uploads/2010/07/www.diabetesincontrol.com_images_tools_druglistaffectingbloodglucose.pdf
http://www.diabetesincontrol.com/wp-content/uploads/2010/07/www.diabetesincontrol.com_images_tools_druglistaffectingbloodglucose.pdf
https://www.fda.gov/downloads/Drugs/DrugSafety/UCM088572.pdf
https://www.fda.gov/downloads/Drugs/DrugSafety/UCM088572.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020702s057lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020702s057lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/019777s054lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/019777s054lbl.pdf


[11] N. A. Johnson. A dynamic programming algorithm for the fused lasso and l 0-segmentation.
Journal of Computational and Graphical Statistics, 22(2):246–260, 2013.

[12] Z. Kuang, J. Thomson, M. Caldwell, P. Peissig, R. Stewart, and D. Page. Baseline regular-
ization for computational drug repositioning with longitudinal observational data. In IJCAI:
proceedings of the conference, volume 2016, page 2521. NIH Public Access, 2016.

[13] Z. Kuang, J. Thomson, M. Caldwell, P. Peissig, R. Stewart, and D. Page. Computational
drug repositioning using continuous self-controlled case series. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
491–500. ACM, 2016.

[14] Z. Kuang, P. Peissig, V. Santos Costa, R. Maclin, and D. Page. Pharmacovigilance via
baseline regularization with large-scale longitudinal observational data. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1537–1546. ACM, 2017.

[15] P. M. Nadkarni. Drug safety surveillance using de-identified emr and claims data: issues and
challenges. Journal of the American Medical Informatics Association: JAMIA, 17(6):671,
2010.

[16] P. Neerati and J. Gade. Influence of atorvastatin on the pharmacokinetics and pharmacody-
namics of glyburide in normal and diabetic rats. European Journal of Pharmaceutical Sciences,
42(3):285–289, 2011.

[17] G. Page, D. Laight, and M. Cummings. Thiamine deficiency in diabetes mellitus and the
impact of thiamine replacement on glucose metabolism and vascular disease. International
journal of clinical practice, 65(6):684–690, 2011.

[18] R. R. Poudel and N. K. Kafle. Verapamil in diabetes. Indian journal of endocrinology and
metabolism, 21(5):788, 2017.

[19] P. Raman. Hypoglycemia induced by pregabalin. Journal of The Association of Physicians
of India, 64, 2016.

[20] P. Ryan. Establishing a drug era persistence window for active surveillance. foundation for
the national institutes of health, 2010, 2015.

[21] S. E. Simpson, D. Madigan, I. Zorych, M. J. Schuemie, P. B. Ryan, and M. A. Suchard. Multi-
ple self-controlled case series for large-scale longitudinal observational databases. Biometrics,
69(4):893–902, 2013.

[22] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), pages 267–288, 1996.

[23] R. Tibshirani, J. Bien, J. Friedman, T. Hastie, N. Simon, J. Taylor, and R. J. Tibshirani.
Strong rules for discarding predictors in lasso-type problems. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 74(2):245–266, 2012.

[24] R. J. Tibshirani and J. Taylor. The solution path of the generalized lasso. The Annals of
Statistics, pages 1335–1371, 2011.

12



[25] P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimiza-
tion. Journal of optimization theory and applications, 109(3):475–494, 2001.

[26] J. W. Tukey. Exploratory data analysis, volume 2. Reading, Mass., 1977.

[27] K. vinh quoc Luong and L. T. H. Nguyen. The impact of thiamine treatment in the diabetes
mellitus. Journal of clinical medicine research, 4(3):153, 2012.

[28] J. Wang, W. Fan, and J. Ye. Fused lasso screening rules via the monotonicity of subdif-
ferentials. IEEE transactions on pattern analysis and machine intelligence, 37(9):1806–1820,
2015.

13


	Introduction
	Materials
	Notation

	Methods
	Dyadic Influence
	Baseline Regularization
	Optimization for Baseline Regularization

	Results
	Notes
	Splitting Patient Records
	Model Selection
	Stopping Criteria

	Conclusion

