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ABSTRACT  

Each year the National Institute of Health spends over 12 billion dollars on patient related 

medical research.  Accurately classifying patients into categories representing disease, 

exposures, or other medical conditions important to a study is critical when conducting patient-

related research. Without rigorous characterization of patients, also referred to as phenotyping, 

relationships between exposures and outcomes could not be assessed, thus leading to non-

reproducible study results.  Developing tools to extract information from the electronic health 

record (EHR) and methods that can augment a teamôs perspective or reasoning capabilities to 

improve the accuracy of a phenotyping model is the focus of this research. This thesis 

demonstrates that employing state-of-the-art computational methods makes it possible to 

accurately phenotype patients based entirely on data found within an EHR, even though the EHR 

data is not entered for that purpose.  Three studies using the Marshfield Clinic EHR are 

described herein to support this research.  

The first study used a multi-modal phenotyping approach to identify cataract patients for 

a genome-wide association study.  Structured query data mining, natural language processing 

and optical character recognition where used to extract cataract attributes from the data 

warehouse, clinical narratives and image documents. Using these methods increased the yield of 

cataract attribute information 3-fold while maintaining a high degree of accuracy.   

The second study demonstrates the use of relational machine learning as a computational 

approach for identifying unanticipated adverse drug reactions (ADEs). Matching and filtering 

methods adopted were applied to training examples to enhance relational learning for ADE 

detection.  

The final study examined relational machine learning as a possible alternative for EHR-based 

phenotyping. Several innovations including identification of positive examples using ICD-9 

codes and infusing negative examples with borderline positive examples were employed to 

minimize reference expert effort, time and even to some extent possible bias.  The study found 

that relational learning performed significantly better than two popular decision tree learning 

algorithms for phenotyping when evaluating area under the receiver operator characteristic 

curve. 

 Findings from this research support my thesis that states: Innovative use of computational 

methods makes it possible to more accurately characterize research subjects based on EHR data.   

 



iii  

 

ACKNOWLEDGEMEN TS 

I would like to thank and acknowledge the many people who have been instrumental in 

the completion of this thesis and supported me during this journey.  

My advisor and mentor, David Page, using kindness and encouragement has guided me 

through this process and taught me the value of collaboration.  David is a man of great intellect, 

yet has the unique ability to communicate complex concepts in a way that was easy for me to 

understand.  David allowed me the flexibility to pursue my own research interest, of which I am 

grateful.  He has demonstrated both patience and enthusiasm for what I have been able to 

accomplish.  It has been both an honor and great privilege to work with David during this 

graduate work.   

I wish to thank my thesis committee members: David DeMets, Amy Trentham-Dietz, 

Eneida Mendonca and Murray Brilliant.  They have been a wonderful source for guidance and 

encouragement.  David DeMets through his wisdom guided me to the Clinical Investigation 

program and encouraged me to pursue this degree.  Amy Trentham-Dietz, Eneida Mendonca and 

Murray Brilliant provided encouragement and spent countless hours reviewing manuscripts 

and/or reading my thesis in detail to provide feedback that enabled me to improve it.  I embrace 

what I have learned from them and hope that I can someday do the same for others as they have 

done for me.     

I am very grateful for having so many wonderful influences throughout my career and 

with great pleasure I extend my gratitude and a special thanks to: Michael Caldwell, Vitor Santos 

Costa, Cathy McCarty, Justin Starren, Dick Berg, David Gustafson and Luke Rasmussen.  I have 

valued their encouragement, advice and perspectives over the past years. I am indebted to them 

and hope to pass on their wisdom. 

Thanks to the Institute for Clinical and Translational Research for developing the Clinical 

Investigation degree program.  This degree program allowed me to combine my interests from 

three distinct academic disciplines into a single degree and thesis.  I would also like to thank 

Debora Treu for her help in navigating through the requirements of graduate school.   

I wish to recognize Marshfield Clinic, Marshfield Clinic Research Foundation and 

Security Health Plan for their support in allowing flexible work schedules so that I could pursue 

this degree.  My research was not possible without support of the following funding sources: 

eMERGE Network, funded by NHGRI under U01-HG-004608; NIGMS grant R01GM097618-

01; NLM grant RO1LM011028-01 and Clinical and Translational Science Award program grant 

9U54TR000021.   

I would like to thank my children, Jacob, Cortney, Whitney and Jedd; my extended  

family children, Tolea and Brandon; my siblings and my extended family as they have provided 

me with  motivation, encouragement and  continuous kidding which prompted me on. I would 

also like to recognize the late William B DeLong, my father, who instilled a strong work ethic 

and taught me to do my best and not to quit. 



iv 

 

Lastly, I am indebted to my husband, Tom.  Without his never ending love and 

encouragement this would not have been possible.    



v 

 

TABLE OF CONTENTS  

 

            Page 

ABSTRACT ................................................................................................................................ ii  

ACKNOWLEDGEMENTS ....................................................................................................... iii  

LIST OF TABLES ..................................................................................................................... ix 

LIST OF FIGURES .................................................................................................................... x 

NOMENCLATURE ................................................................................................................ xiii  

CHAPTER 1 .................................................................................................................................. 1 

1.1 Introduction ............................................................................................................... 1 

1.2  Thesis Statement ....................................................................................................... 2 

1.3 Contributions............................................................................................................. 2 

1.4 Document Overview: ................................................................................................ 3 

CHAPTER 2 .................................................................................................................................. 4 

Background ................................................................................................................................. 4 

2.1 Electronic Health Records ........................................................................................ 4 

2.1.1 Data classes available within the EHR ............................................................ 5 

2.2  Phenotyping .............................................................................................................. 6 

2.2.1 EHR Phenotyping Process ............................................................................... 7 

2.2.2 Multi -disciplinary Phenotyping Teams............................................................ 7 

2.2.3 EHR Phenotyping Challenges.......................................................................... 8 

2.2.3.1 Phenotyping Tradeoffs ...................................................................... 8 

2.2.3.2 Feature Identification ...................................................................... 11 

2.2.4 Phenotyping Tools and Technologies ............................................................ 11 

2.2.4.1 Data Warehouse .............................................................................. 11 

2.2.4.2 Structured Queries and Data Manipulation ..................................... 12 

2.2.4.3 Natural Language Processing .......................................................... 12 

2.2.4.4 Optical Character Recognition ........................................................ 13 

2.3 Machine Learning ................................................................................................... 13 



vi 

 
2.3.1 Decision Trees ............................................................................................... 14 

2.3.1.1 Interactive Dichotomizer 3 .............................................................. 15 

2.3.1.2 C4.5 ................................................................................................. 16 

2.3.1.3 Classification and Regression Trees ............................................... 17 

2.3.2 Association Rule Learning ............................................................................. 18 

2.3.3 Bayesian Networks ........................................................................................ 18 

2.3.4 Relational Learning ........................................................................................ 20 

2.3.4.1 Inductive Logic Programming Explanation ....................................... 21 

2.3.4.2 Inductive Logic Programming Progol Algorithm .............................. 22 

2.3.4.3 Statistical Relational Learning ........................................................... 23 

2.4 EHR Challenges with Machine Learning ............................................................... 23 

2.5 Machine Learning and Phenotyping ....................................................................... 23 

2.5.1 Machine Learning Phenotyping Literature Review ....................................... 24 

CHAPTER 3 ................................................................................................................................ 27 

Importance of Multi-modal Approaches to Effectively Identify Cataract Cases from 

Electronic Health Records ............................................................................................... 27 

3.1 Background ............................................................................................................. 27 

3.2 Significance and Contribution ................................................................................ 28 

3.3  Methods................................................................................................................... 29 

3.3.1 Marshfieldôs Study Population ...................................................................... 29 

3.3.2 Electronic Medical Record ............................................................................ 29 

3.3.3 Cataract Code-based Phenotyping ................................................................. 30 

3.3.4 Cataract Subtype Multi-modal Phenotyping .................................................. 31 

3.3.5 Validation ....................................................................................................... 34 

3.3.6 Analysis.......................................................................................................... 35 

3.3.7 Cross-Site Algorithm Implementation ........................................................... 35 

3.4 Results ..................................................................................................................... 35 

3.4.1 External Validation ........................................................................................ 41 

3.5 Discussion ............................................................................................................... 42 

3.6 Conclusion .............................................................................................................. 44 

3.7 Contributorship to this chapter................................................................................ 45 



vii  

 

CHAPTER 4 ................................................................................................................................ 46 

Identifying Adverse Drug Events by Relational Learning ....................................................... 46 

4.1  Background ............................................................................................................. 46 

4.2 Machine Learning for Predicting ADEs ................................................................. 48 

4.2.1 Implementing Relational Learning for ADEs ................................................ 49 

4.3  Experiment with a Real EHR and Known ADEs ................................................... 50 

4.3.1 Population ...................................................................................................... 50 

4.3.2 Data Source .................................................................................................... 51 

4.3.3 Data Pre-Processing ....................................................................................... 51 

4.3.4 Censoring ....................................................................................................... 52 

4.3.5 Scoring Function and Filtering ...................................................................... 52 

4.3.6 Validation ....................................................................................................... 53 

4.3.7 Results ............................................................................................................ 53 

4.4 Conclusion .............................................................................................................. 54 

4.5 Applications for Machine Learning in Active Surveillance ................................... 55 

4.6 Contributorship to this chapter................................................................................ 55 

CHAPTER 5 ................................................................................................................................ 57 

Relational Machine Learning for Electronic Health Record-Driven Phenotyping ................... 57 

5.1 Background and Contributions ............................................................................... 57 

5.2 Materials and Methods ............................................................................................ 58 

5.2.1 Data sources and study cohort ....................................................................... 59 

5.2.2 Phenotype selection ....................................................................................... 59 

5.2.3 Identifying training examples for supervised learning .................................. 60 

5.2.4 Relational Learning and ILP approach .......................................................... 60 

5.2.4.1 Constructing background knowledge .............................................. 61 

5.2.4.2 ILP Scoring functions: .................................................................... 61 

5.2.5 Classical Machine Learning Approaches....................................................... 62 

5.2.6 Validation ....................................................................................................... 63 

5.2.7 Analysis.......................................................................................................... 63 

5.3 Results ..................................................................................................................... 63 



viii  

 
5.4 Discussion ............................................................................................................... 70 

5.5 Conclusion .............................................................................................................. 72 

5.6 Contributorship ....................................................................................................... 72 

CHAPTER 6 ................................................................................................................................ 74 

Conclusion ................................................................................................................................ 74 

6.1 Summary ................................................................................................................. 74 

6.2 Future Work ............................................................................................................ 76 

Bibliography ............................................................................................................................. 78 

Appendix A:  Multi-modal Cataract Validation Results........................................................... 90 

Appendix B:  Detailed Methods for a Cataract Phenotype Example........................................ 92 

Appendix C:  File layouts and Scripts used in ILP and ILP+FP Analysis ............................... 98 

Appendix D:  Inductive Logic Programming Rules ï Cataract Phenotype ............................ 111 



ix 

 

LIST OF TABLES  

Table Page 

2.1   Cataract phenotype algorithm description. This is a simplified version of a model 

used to identify patients with cataracts. .............................................................................10 

 

3.1   Cataract phenotype validation results. ...............................................................................37 

 

3.2   Detailed results for the cataract subtype multi-modal validation. .....................................38 

 

3.3   Severity and location validation results. ............................................................................39 

 

4.1   Top 10 Most Significant Diagnoses Identified for Cox2 Medication Use ........................53 

 

4.2   Top 10 Most Significant Rules Identified for Cox2 Medication Use ................................54 

 

5.1   Phenotypes and sampling frame ........................................................................................65 

 

5.2   Validation sample characteristics ......................................................................................66 

 

5.3   Phenotype model validation results by phenotype. This table presents a 

comparison of Machine Learning methods for comparison. .............................................67 

 

5.4   Overall phenotyping approach evaluation. ........................................................................68 

 

6.1 Overview of research representing computational methods applied to EHR-driven 

Phenotyping .......................................................................................................................74 

file://MCLHOME2/home2$/peissigp/Personal/Disser/2013Thesis/FinalSend/PeissigDissertationMaster.docx%23_Toc358925532
file://MCLHOME2/home2$/peissigp/Personal/Disser/2013Thesis/FinalSend/PeissigDissertationMaster.docx%23_Toc358925533


x 

 

LIST OF FIGURES 

Figures Page 

 
2.1   Electronic Medical Record Example ...................................................................................4 

 

2.2   Phenotyping Process ............................................................................................................7 

 

2.3:   Ins and Outs of EHR Phenotyping .......................................................................................8 

 

2.4   Decision Tree Example ......................................................................................................14 

 

2.5   High and low entropy.........................................................................................................16 

 

2.6   Gini Splitting at Root and Sub-nodes ................................................................................17 

 

2.7   Example of Bayesian Network and Conditional Probability Tables .................................18 

 

3.1 eMERGE Cataract phenotyping algorithm. Overview of the cataract algorithm 

logic used when selecting the cataract cases and controls for the electronic 

MEdical Record and GEnomics (eMERGE) genome-wide association study. 

Cataract cases were selected if the subject had either a cataract surgery, or 2+ 

cataract diagnoses, or 1 cataract diagnosis with either an indication found using 

Natural Language Processing (NLP) or Optical Character Recognition (OCR). 

Controls had to have an optical exam within 5 years with no evidence of a 

cataract. Both cataract cases and controls had to be age 50 or older with controls 

requiring the absence of the exclusion criteria. The details of this algorithm are 

published on the eMERGE website (eMERGE website). .................................................31 

 

3.2 Multi -modal Cataract Subtype Processing.  Overview of the information 

extraction strategy used in multi-modal phenotyping to identify nuclear sclerotic, 

posterior sub-capsular and/or cortical (N-P-C) cataract subtypes. This figure 

depicts the N-P-C subtype yield using two populations: 1) the left-most path of 

the figure denotes unique subject counts for the entire Personalized Medicine 

Research Project cohort; 2) the right-most path denotes unique subject counts for 

the identified cataract cases. A hierarchical extraction approach was used to 

identify the N-P-C subtypes. If a subject had a cataract subtype identified by an 

file://MCLHOME2/home2$/peissigp/Personal/Disser/2013Thesis/FinalSend/PeissigDissertationMaster.docx%23_Toc358925047
file://MCLHOME2/home2$/peissigp/Personal/Disser/2013Thesis/FinalSend/PeissigDissertationMaster.docx%23_Toc358925048
file://MCLHOME2/home2$/peissigp/Personal/Disser/2013Thesis/FinalSend/PeissigDissertationMaster.docx%23_Toc358925049
file://MCLHOME2/home2$/peissigp/Personal/Disser/2013Thesis/FinalSend/PeissigDissertationMaster.docx%23_Toc358925050
file://MCLHOME2/home2$/peissigp/Personal/Disser/2013Thesis/FinalSend/PeissigDissertationMaster.docx%23_Toc358925051
file://MCLHOME2/home2$/peissigp/Personal/Disser/2013Thesis/FinalSend/PeissigDissertationMaster.docx%23_Toc358925052
file://MCLHOME2/home2$/peissigp/Personal/Disser/2013Thesis/FinalSend/PeissigDissertationMaster.docx%23_Toc358925053


xi 

 

ICD-9 code, Natural Language Processing (NLP) or Optical Character 

Recognition (OCR) was not utilized. Cataract subtypes identified using NLP had 

no subsequent OCR processing. ........................................................................................32 

 

3.3 Natural Language Processing of Clinical Narratives. Textual documents 

containing at least one reference of a cataract term were fed into the MedLEE 

Natural Language Processing (NLP) engine and then tagged with appropriate 

UMLS Concept Unique Identifiers (CUIs) before being written to an XML 

formatted file. Post-processing consisted of identifying the relevant UMLS 

cataract CUIs and then writing them along with other patient and event 

identifying data to a file that was used in the phenotyping process...................................33 

 

3.4 Optical character recognition utilizing electronic eye exam images.  Image 

documents were processed using the LEADTOOLS and Tesseract Optical 

Character Recognition (OCR) engines. A tagged image file format (TIFF) image 

was pasted through the engines with results being recorded independently. 

Common misclassifications were corrected using regular expressions, and final 

determinations were made regarding subtype and severity. ..............................................34 

 

3.5 Nuclear sclerotic cataract subtype multi-modal approaches.  Illustrates the overlap 

between multi-modal phenotyping approaches when phenotyping for nuclear 

sclerotic (NS) cataract subtypes. The largest subtype yield comes from natural 

language processing (NLP) with NS being identified for 1213 unique subjects. 

This is followed by the optical character recognition (OCR) approach, which 

identified 813 unique subjects. Conventional data mining (CDM/Dx) using 

diagnostic codes identified NS subtypes in only 493 unique subjects. ..............................40 

 

3.6 Multi -modal yield and accuracy for nuclear sclerotic cataract subtype. Illustrates a 

step-wise approach that was used to identify subjects with nuclear sclerotic (NS) 

subtypes. Conventional data mining (CDM/Dx) using ICD9 diagnostic codes was 

used first because it required the least effort. Natural language processing (NLP) 

was applied to the remaining subjects if a NS subtype was not identified and 

optical character recognition (OCR) was used if the previous approaches did not 

yield a subtype. Out of a possible 4309 subjects having cataracts, 1849 subjects 

had indication of a NS subtype. Both yield (represented by the number of unique 

subjects having a NS subtype) and accuracy (represented by positive predictive 

value (PPV), Specificity, Sensitivity and negative predictive value (NPV)) are 

presented for each approach. This study used PPV as the accuracy indicator. The 

file://MCLHOME2/home2$/peissigp/Personal/Disser/2013Thesis/FinalSend/PeissigDissertationMaster.docx%23_Toc358925058
file://MCLHOME2/home2$/peissigp/Personal/Disser/2013Thesis/FinalSend/PeissigDissertationMaster.docx%23_Toc358925058
file://MCLHOME2/home2$/peissigp/Personal/Disser/2013Thesis/FinalSend/PeissigDissertationMaster.docx%23_Toc358925058
file://MCLHOME2/home2$/peissigp/Personal/Disser/2013Thesis/FinalSend/PeissigDissertationMaster.docx%23_Toc358925058
file://MCLHOME2/home2$/peissigp/Personal/Disser/2013Thesis/FinalSend/PeissigDissertationMaster.docx%23_Toc358925058
file://MCLHOME2/home2$/peissigp/Personal/Disser/2013Thesis/FinalSend/PeissigDissertationMaster.docx%23_Toc358925058
file://MCLHOME2/home2$/peissigp/Personal/Disser/2013Thesis/FinalSend/PeissigDissertationMaster.docx%23_Toc358925058


xii  

 

number of unique subjects with NS subtypes increased using the multi-modal 

approach while maintaining a high PPV. ...........................................................................41 

 

4.1  Distribution of people with risk of myocardial infarction (MI) .........................................50 

 

5.1 Overview of data preparation and analysis processes. Patient data from the data 

warehouse is de-identified and validation subjects are removed. Left side of figure 

shows data preparation for J48 and PART (WEKA) analyses. Right side of figure 

shows steps to identify training examples and integration of background data for 

the induction logic programming (ILP). Validation subjects are used for testing 

accuracy of Rules. Rules are used to create features for WEKA Bayes-net Tan for 

creation of area under the receiver operator characteristic curve. .....................................59 

 

5.2 (A) Inductive logic programming (ILP) uses data collected prior to a prediction 

date to predict disease outcomes. (B) Phenotyping using ILP uses data collected 

after the incident date (of a condition), to predict features that a subgroup may be 

sharing that are representative of a phenotype. ..................................................................61 

 

5.3  Censoring data to support inductive logic programming scoring functions ......................62 

 

5.4 Area under receiver operator characteristic (AUROC) curves was used for 

selected phenotypes for ILP+FP. The diabetes AUROC curve is not displayed 

because it mirrors the diabetic retinopathy AUROC. Asthma is not displayed 

because negative examples were not available for calculations used to produce the 

AUROC curves. .................................................................................................................69 

 

5.5 A sample of the top ñscoringò inductive logic programming rules for acute liver 

injury. The ñboldò lettered rules are indicative of ñfactsò related to or associated 

with acute liver injury. The highlighted ILP rule (rule #35) represents a ñfactò 

(Differential Nucleated RBC' is 'High') that was unknown to a physician reviewer 

prior to this investigation. ..................................................................................................70 

file://MCLHOME2/home2$/peissigp/Personal/Disser/2013Thesis/FinalSend/PeissigDissertationMaster.docx%23_Toc358925060
file://MCLHOME2/home2$/peissigp/Personal/Disser/2013Thesis/FinalSend/PeissigDissertationMaster.docx%23_Toc358925063


xiii  

 

NOMENCLATURE  

ADE  Adverse Drug Event 

ALI   Acute Liver Injury 

AUROC  Area Under the Receiver Operator Characteristic curve 

BN  Bayesian Networks 

CART  Classical and Regression Trees 

CDM  Conventional Data Mining 

CDR  Clinical Data Repository 

CHF  Congestive Heart Failure 

Cox2ibs  Cox2 Inhibitors 

CPT®  Current Procedural Terminology 

cTAKES  clinical Text Analysis and Knowledge Extraction System 

C4.5 & C5.0  Decision tree learning algorithm developed by Quinlan 

CUIs  Concept Unique Identifiers 

DNA  Deoxyribonucleic acid 

DR  Diabetic Retinopathy 

DW  Data Warehouse 

Dx  Diagnosis 

FP  False Positive 

GH  Group Health Research Institute 

GWAS  Genome-Wide Association Study 

EHR  Electronic Health Record 

eMERGE  electronic Medical Record and Genomics Network 

EHR  Electronic Medical Record 

ICD-9CM International Classification of Diseases, Ninth Revision, Clinical 

Modification 

ID3  Interactive Dichotomizer 3 

J48  Java implementation of decision tree classifier based on C4.5 

ILP   Inductive Logic Programming 



xiv 

 

KMCI  Knowledge Map Concept Identifier 

NIH  National Institute of Health 

NU  Northwestern University 

MedLEE  Medical Language Extraction and Encoding system 

ML  Machine Learning 

N-P-C  Nuclear sclerotic, posterior sub-capsular and cortical cataract subtypes 

NS  Nuclear sclerotic 

NEG  Negative examples 

NLP  Natural Language Processing 

NPV  Negative Predictive Value 

i.i.d.  Independent and identically distributed data 

OCR  Optical Character Recognition 

PART  Rule based classifier for machine learning 

PMRP  Personalized Medicine Research Project 

POS  Positive examples 

PPV  Positive Predictive Value 

SNOMED-RT  Systematized Nomenclature of Medicine Reference Terminology 

SRL  Statistical Relational Learning 

SVM  Support Vector Machines 

TIFF  Tagged image file format 

UMLS  Unified Medical Language System 

VU  Vanderbilt University 

WEKA  Machine Learning software 

XML   Extensible Markup Language 

  

 



1 

 

  

 

1
 

CHAPTER 1    

1.1 INTRODUCTION  

The National Institute of Health (NIH) spends billions of dollars each year on medical 

research activities. In 2012 alone, approximately $147 billion dollars was spent funding various 

types of disease and medical condition related research (NIH RCDC Funding, 2013). Almost 

half of the competitive medical research funded by the NIH involves human subjects, or patients 

(Zinner et al., 2009). Accurately classifying patients into categories representing disease, 

exposures, or other medical conditions important to a study is critical when conducting patient-

related research.  Without this rigorous classification, also referred to as phenotyping, 

relationships between exposures and outcomes cannot be accurately quantified, thus causing 

varying and non-reproducible results in some clinical and genetic studies (Bickeboller et al, 

2003; Schulze et al, 2004; Gurwitz et al, 2010; Samuels et al, 2009;  Wojczynski et al, 2008). 

Due to the availability of electronic patient information, the Electronic Health Record 

(EHR)ðalso called the Electronic Medical Record (EMR)--is increasingly being used to identify 

and characterize patients for medical research. The EHR contains highly relational and inter-

dependent biological, anatomical, physiological and behavioral observations and facts that 

represent a patientôs phenotype. EHR-driven phenotyping, a process whereby patients are 

electronically categorized using EHR data, has become a popular and cost-effective strategy for 

identifying large numbers of research subjects (Kho et al, 2011; McCarty et al, 2011). 

The EHR-driven phenotyping process is largely dependent on multiple iterations of 

selecting patients and then manually reviewing them to identify classification criteria that can be 

programmed to select patients from the EHR.  The process relies on the perceptions and 

knowledge of a multi-disciplinary team to uncover ñhiddenò relationships or ñunseenò attributes 

found within the EHR data.  As clinical experts (physicians) contribute to this effort, they 

describe attributes that are easy to see within their practice.  They may miss attributes that they 

do not typically use when examining a patient but that are informative in the context of the EHR.  

Simply asking physicians what they want to search for is not optimal because, while they may 

ñknow it when they see it,ò they may not be able to anticipate ahead of time all the patterns in the 

EHR that will best correlate with a given disease.  In addition, the probabilistic structures of 

EHR data are such that not all attributes that are observed are necessarily routinely recorded.  

Likewise, there may be other attributes that are recorded to substantiate billing or rule-out 

reasons that should not be considered necessarily true; for example, a diagnosis code of 410 

(acute myocardial infarction), may be entered to justify billing for a troponin lab test to rule out 

myocardial infarction (MI), rather than being entered to categorically assert that the patient had 
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an MI.  Those sorts of correlations may not be visible to the physician and may lead to additional 

iterations of phenotype definition development. The result is a serious bottleneck in the 

construction of high quality phenotyping models. 

The National Human Genome Research Institute has invested approximately $30+ 

million in the electronic Medical Records in Genomics (eMERGE) network to determine if 

EHRs can successfully be used to identify clinical populations for genome-wide association 

study research (eMERGE Funding, 2011).  One goal of that research network is to develop high 

throughput phenotyping methods that can be shared across institutions.   High throughput 

phenotyping implies accelerating and expanding the current phenotyping process.  Developing 

tools to extract information from the EHR and methods that can augment a teamôs perspective or 

reasoning capabilities to improve the accuracy of a phenotyping model or improve the efficiency 

of the phenotyping process is the focus of this research.  

Because EHR-based phenotyping is important (Manolio et al, 2009; Ellsworth et al, 

1999; Bickerboller et al, 2003; Schulze et al, 2004) and because phenotyping is hard and time 

consuming (Kullo et al, 2010; Wojczynski et al, 2008 ), conducting research on methods that 

improve the phenotyping process is critical to the advancement of medical research and the 

science surrounding EHR-driven phenotyping.   

1.2  THESIS STATEMENT  

Contemporary EHR-driven phenotyping methods have proven successful in producing 

high quality phenotypes.  Nevertheless, phenotyping efforts I have been involved with or that 

have documented time and resources have typically run from six months to over a year and 

required numerous meetings and substantial time commitments from multiple clinicians, 

informaticists, programmers, and project coordinators.  Much of that time is spent identifying 

attributes that accurately characterize the phenotype. My thesis is:   

Innovative use of computational methods makes it possible to more accurately 

characterize research subjects based on EHR data.  

1.3 CONTRIBUTIONS  

With the increasing pressure to accelerate research and make it more efficient, there is a 

unique opportunity to advance the science surrounding EHR-based phenotyping and expand 

machine learning applications. This research contributes to both of these bodies of knowledge. 

Electronic health record phenotyping and the application of computational methods based 

on machine learning approaches are general themes that connect the studies represented in this 

dissertation.  Chapters 3-5 outline the ways in which this dissertation contributes to the fields of 

EHR-driven phenotyping and machine learning.  Specifically these contributions are: 1) 
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demonstrating the use of a multi-mode approach (structured queries, natural language processing 

and optical character recognition) to increase subject yield without compromising quality, for 

cataract and cataract subtype phenotyping; 2) using relational learning, particularly inductive 

logic programming (ILP), to identify adverse drug events in patient sub-groups, given the use of 

cox2-inhibitor medications; and 3) adapting ILP to the phenotyping task in a large relational 

database, by using unique cost functions and data censoring techniques; generating training sets 

without expert (physician) assistance for supervised machine learning; and infusing negative 

examples with borderline positive examples to improve ILP model performance.  

1.4 DOCUMENT OVERVIEW : 

The chapters of this document are organized as follows:  

Chapter 2 is intended to provide basic background information that will be used to help 

the reader understand materials that are presented in Chapters 3-5. There are three main topics 

that are presented:  1) the electronic health record; 2) phenotyping; and 3) machine learning.  The 

chapter is designed to provide an overview of these topics and present popular methods or 

approaches used for phenotyping.  

Chapter 3 introduces an approach that uses multiple computational methods to gather 

information for phenotyping. The methods include structured queries that are used on coded 

EHR data; natural language processing which is used to extract concepts from textual 

documents; and optical character recognition, used for identifying notations or characters on 

image documents; the latter two methods are based on machine learning as the underlying 

analytics to mine information.  The chapter emphasizes the importance of using multiple 

methods to increase subject yield while still maintaining an adequate level of accuracy when 

phenotyping. 

Chapter 4 introduces the relational machine learning approach and the novel methods of 

censoring by matching, temporal difference, and iterative interaction between a human and 

computer when developing models.  Using medications (Cox2 inhibitors), I demonstrate the use 

of my methods to predict adverse drug events (ADE).  An ADE is defined as a health-related 

problem or injury resulting from taking a normal dose of medication.   This innovative ADE 

detection approach was then modified and applied to phenotyping in Chapter 5.      

Chapter 5 introduces methods that use induction logic programming for the phenotyping 

task.  It also presents an approach that minimizes physician involvement in the selection of 

training sets for the supervised learning activity.    

Chapter 6 summarizes the contributions of this research and presents future areas of 

research. 
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CHAPTER 2  

Background 

This dissertation draws on two areas of research: EHR-driven phenotyping and 

computational methods such as machine learning. This chapter provides information on both 

subjects in addition to a detailed description of the electronic health record (EHR).  

2.1 ELECTRONIC HEALTH RECORDS 

The EHR represents a record of a patientôs health information over time, as generated 

through on-going interactions with a health care system. Data from the EHR is usually 

transferred to a data warehouse and stored in relational schemas (refer to figure 2.1). There are 

many challenges when using this data.  

1. Data are stored in multiple tables, rather than in one table with one record per patient, 

thus making it more complex to link a patientôs medical history.  

2. There is usually missing and/or incomplete information surrounding a patientôs clinical 

history.  

3. Patients may have unsubstantiated presumptive diagnoses in their medical record. For 

example, in some cases an ICD-9 diagnosis code is linked to an explanation that 

laboratory tests are being done in order to confirm or eliminate the coded diagnosis, 

rather than to define that a patient has the diagnosis.  

4. Information found within the EHR is not always stored in a readily computable format 

(scanned images of hand written notes or test results, electronic text documents, etc.).  

5. There is a lack of standardized entries in the EHR.  

Figure 2.1:  Electronic Medical Record Example 
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6. Clinical applications that support single data entry with minimal error checking result in 

erroneous data.  

7. Clinical problems drive the EHR documentation practices, meaning there is poor 

negation of a disease or conditions when compared to reality.  This point is critical when 

defining the control population because the ñAbsence of evidence is not evidence of 

absenceò (Sagen, 2013).   

8. There are methodological issues to address when using longitudinal data, e.g. multiple 

records for a given condition and multiple measurements ï one must determine which 

ones to use (Wojczynski et al, 2008; Elkin et al, 2010).  

Although there are known limitations of using EHR data there are also benefits for 

research. The EHR captures a variety of longitudinal information about a patient, ranging from 

detailed measurements to impressions provided by clinical experts. The EHR data is readily 

available for research, thus reducing the cost and time required to gather the data (Elkin et al, 

2010). Traditional research data retrieval techniques usually capture data at defined point(s) in 

time and are not reflective of routine patient care measurements.   In addition, the EHR data 

reflects ongoing interactions with the health system and also spans the continuum of health care 

representing primary, secondary and tertiary care events.  While EHR data is often criticized for 

inaccuracies, (Hripcsak et al, 2011; Botsis et al, 2010) the reality is that the data is used in 

clinical care and it can be used for research (Herzig, 2009; Elixhauser, 1998; Peissig, 2012).  

Consequently, any genetic or clinical discovery translation into clinical practice must leverage 

the EHR data. 

2.1.1 Data classes available within the EHR 

The EHR retrieves and stores a variety of patient related data and information from a 

Clinical Data Repository (CDR).  The CDR is optimized for patient care data delivery and data is 

returned usually in milliseconds, to clinical staff caring for the patient.  There are three primary 

types of data found within the CDR.  

 Structured or coded data ï Demographic data such as name, address, gender, date of birth 

and death are usually stored as structured data.  ICD-9-CM diagnostic and procedure 

codes and Current Procedural Terminology (CPT) procedure codes are administrative 

types of data that are used for billing purposes.  Laboratory results, clinical observations 

(such as height, weight, biometric data), and medication inventories and prescriptions are 

also structured types of data that are often stored with code, name, description and 

version attributes in a relational database (Denny, 2012).  Structured data within the EHR 

is limited due to the effort required to capture it.  Structured or coded data is almost 

always used to some degree, in the phenotyping effort.  
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 Narrative documentation ï Narrative and semi-structured textual documents store 

transcribed notes, summaries of care such as hospital discharge summaries, clinical visit 

and telephone notes, interpretations from radiology exams and interpretations, laboratory 

interpretations and test results such as echocardiograms, angioplasty and surgeries, to 

name a few.  There is a wealth of information embedded within clinical narratives and 

use within the EHR usually requires reading a document to gain information about a 

patient.  Xu et al. (Xu et al, 2011) showed the use of clinical narratives identified 

colorectal cancer cases more reliably than coded EHR data such as ICD-9 and CPT 

codes. Clinical narratives are increasingly being used in the phenotyping effort.  The 

volume of documents available in the EHR varies based on the length of time the EHR 

has been used for clinical care.  These narratives  

 Images and digital films ï Clinical images including radiology, digital procedures such as 

an angioplasty procedure, genetic DNA scans, ophthalmology drawings are just a few 

examples of clinical images. Hand-written documents are often scanned as images into 

the EHR. Information retrieval from these types of media is usually manual and requires 

reading or viewing and then interpreting by the reviewer.  This media is rarely used when 

phenotyping because of the expense involved in training software to retrieve the data 

even though there is usually more image documents than clinical narratives and 

structured data combined. 

2.2  PHENOTYPING  

Careful phenotyping is both critical to the eventual results discovered by a study 

(Bickeboller et al, 2003) and a source of great challenge due to the variety of phenotyping 

approaches that can be employed with the same data (Schulze et al, 2004). Care must be taken at 

multiple levels with rigorous attention to data quality, completeness, comparability and 

recognition and reduction of clinical heterogeneity (Schulze et al, 2004; Wojczynski et al, 2008). 

This can be demonstrated by using a characteristic such as blood pressure.  A simple approach 

distinguishes people who have had an elevated blood pressure based on one measurement found 

in a database containing blood pressure measurements from those who have not.  However, a 

more useful approach would be to determine the extent to which a participantôs average systolic 

(or diastolic) blood pressure over time is above or below their own expected average, given their 

age and body mass index at the time of each measurement.  In order to generate a particular 

blood pressure phenotype, data on systolic and diastolic values, date of each measurement, date 

of birth (or age at measurement), weight and height at time of each measurement, plus data on 

the nature of the blood pressure reading, if available (sitting, standing, supine; on treatment or 

not) are needed.  The phenotype would then be based on the residuals from a regression model 
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that attempts to predict mean blood pressure with mean age and mean body mass index.  This 

method employs the available longitudinal data that can be found in the EHR and also adjusts for 

other contributors to blood pressure status such as blood pressure medication.  These issues are 

particularly challenging to address when using data found within the EHR.  Phenotypes are 

sometimes difficult to define because the disease or clinical manifestation may have an 

ambiguous or imprecise definition or be inadequately measured; the phenotype may encompass 

several underlying conditions where each have their own influences from genetics and the 

environment; or there may be unknown environmental or genetic influences (Wojczynski et al, 

2008 ). 

2.2.1 EHR Phenotyping Process 

Defining a phenotype model representing a true disease state as well as intermediate 

phenotypes based on biological markers or clinical test results requires a clear understanding of 

methods to reduce clinical heterogeneity and/or deal with data quality issues. The current state of 

EHR-based phenotyping is maturing, but often a semi-manual process is used to derive valid 

phenotypes (see figure 2.2).  A multi- disciplinary team identifies and then translates features 

representing subjects with the desired phenotype into a programmable data definition used to 

select patients from a data repository.  In some instances, statistical modeling is done to reduce 

heterogeneity (Waudby et al, 2011). The data is analyzed and adjustments made to the model 

prior to pulling a sample of subjects to validate.  Iterations of code revisions, record re-extraction 

and clinician review (validation) 

are usually required to increase the 

accuracy of the model.  

2.2.2 Multi -disciplinary 

Phenotyping Teams 

Given the complex nature of 

phenotyping, having involvement 

from individuals spanning a variety 

of disciplines (medicine, 

epidemiology, biostatistics, 

informatics, programming, medical 

record abstraction and research) is 

extremely important. There are 

several advantages of phenotyping 

using a multidisciplinary team: 1) 

Figure 2.2:  Phenotyping Process 
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team members can offer a wide range of expertise from their respective disciplines; 2) they offer 

different perspectives when dealing with problems; and 3) teams members can usually work on 

tasks in parallel thus speeding the needed work.  

Team members because of their cognitive ability, respective discipline and experiences 

bring different skills, knowledge and perspectives to the process, which can affect phenotyping 

outcomes if not managed effectively. A study by Barrick et al., evaluated team member ability 

and personality, to see how those attributes affect team effectiveness (Barrick et al, 1998).  Their 

study showed that general mental ability, conscientiousness, agreeableness, extraversion and 

emotional stability supported team performance activities.  This work somewhat corroborates a 

study by Woolley et al. that looked at team composition and analytic effectiveness (Woolley et 

al, 2008). The authors noted that bringing members with strong task-relevant abilities together 

with experts (those who possess a higher level of knowledge or skill than the average person) 

yields a greater potential to influence analytic performance.  Nevertheless, building such a team 

can also present several challenges such as: 1) team member status dynamics may cause lower 

status team members to give more credence to experts than they deserve, or experts may not be 

inclined to take seriously the views of other team members; and 2) the abilities and skills of 

others may not be well known to all members and thus not utilized. The authors recommend 

conducting collaborative planning activities to define how members engage in explicit 

discussions, work assignment and how contributions will be used.  The study demonstrated that 

team abilities and composition planning more positively impacts analytic team performance than 

team composition or collaborative planning alone.   

This research is relevant to the phenotyping process and team makeup because 

phenotyping is an analytic exercise at many levels.  One person usually does not have the skills 

or knowledge to conduct all of the tasks required in the process.  Bringing team members with 

different skills and cognitive abilities together to conduct phenotyping requires organization, 

planning and mutual respect of team member contributions.  Recognizing the team dynamics, 

member abilities and providing a 

framework for work can improve 

the phenotyping process.  

2.2.3 EHR Phenotyping 

Challenges 

2.2.3.1 Phenotyping Tradeoffs  

It is clear from the extent 

of articles published and creative 

Condition

Definitely

Absent

Negative

On Inference

Not 

Enough

 Data

Positive

On Inference

Easy

 Positive

Exclusions

Definite

Exclusion

Exclusion

Inferred

Not 

Enough

 Data

No Exclusion

Inferred

Exclusion

Absence

Asserted

Figure 2.3:  Ins and Outs of EHR Phenotyping  

Obtained from eMERGE Network (eMERGE, 2012) 
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activity surrounding the topic of EHR-based phenotyping for genetic studies (Kho et al, 2011; 

Wojczynski et al, 2008) that there is not, and probably cannot be, just one correct approach to 

phenotyping. A major challenge in the phenotyping process is to address tradeoff decisions 

between participant eligibility and phenotype homogeneity.  In other words, the phenotype 

definitions that will succinctly characterize a subject and reduce heterogeneity will often require 

inclusion of more phenotypic factors with greater specificity in their definition, thereby reducing 

the total number of participants with the necessary data to be considered eligible for accurate 

phenotyping.  The desired phenotype may require such specific data that many participants will 

be ineligible for a study.  In order to phenotype a greater portion of participants, some relaxation 

of eligibility rules and data comparability may be required.  Figure 2.3 illustrates this concept.  

As with the phenotype conditions, there are varying degrees of exclusions, and evaluation is 

needed to determine the tradeoffs. 

The tradeoff concept can best be demonstrated using a cataract phenotyping example. 

Table 2.1 provides a ñsimplifiedò version of cataract criteria developed for EHR-driven 

phenotyping.  Letôs say that someone is conducting a genome-wide association study and 

requires 1000 patients with a cataract (or who previously had a cataract) and 1000 patients who 

did not develop the condition.  Prior to selecting patients for each group, an acceptable inclusion 

accuracy threshold (for selecting patients based on criteria or combinations of criteria) will be 

determined.  Initially all criteria listed in table 2.1 could be used to identify probable cataract 

patients. One could speculate that a high percentage of patients identified using all of the criteria 

would actually have cataracts (denoted as ñeasy positivesò in figure 2.3).    This could be verified 

by reviewing the surgical and ophthalmology notes for the patients.  What if only 800 patients 

were identified using all of the criteria?  We still need 200 more patients for the study.  The next 

step will be to relax the phenotyping criteria and use a subset of the criteria to see if there are 

patients (not originally selected) who have a cataract surgical code and not a cataract diagnosis 

code.  If patients are identified, a similar verification of patient cataract status would ensue.  

Using surgical procedure codes for cataract patient detection is highly predictive of cataracts 

because a physician would bill for the cataract removal and would not want to miss a revenue 

generating opportunity.  It is more difficult to identify cataract patients if the removal was done 

outside of the health care system because there would be no record of the event and no incentive 

to record this information. Thus far this example illustrates a trade-off on the condition 

continuum by relaxing specific eligibility criteria (which may add bias to the study), to gain more 

subjects for a study.  

To continue this example, we next use the diagnostic code (without a CPT procedure 

code) to identify cataract patients. As before we select a group of patients not previously 

classified using diagnosis codes and verify a sample to estimate the percentage of patients who 
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actually meet the criteria.  If the true positive rate meets the accuracy threshold, we will add 

these subjects to the cataract group.  Note that subjects are becoming more like the controls 

because we are relaxing our criteria and identifying patients using different criteria (and also 

moving into the green/grey area on the continuum).  

 

Table 2.1:  Cataract phenotype algorithm description. This is a simplified version of a model used to identify 

patients with cataracts.   

Criteria  Describing Criteria  Description 

1 Condition Must have 1 Cataract removal 

surgery code 

Select the following CPT codes '66982', 

'66983', '66984', '66985', '66986','66830', 

'66840', '66850', '66852', '66920', '66930', 

'66940'. 

Exclusion Exclude traumatic, congenital and 

juvenile cataract surgery codes. 

 

Condition Must be age 50 or older at the time 

of surgery 

 

2 Condition Must have 2+ cataract ICD-9 

diagnosis codes 

Senile Cataract 366.10 ï 366.8 

 Unspecified Cataract 366.9 

Exclusion Do not include any of these ICD-9 

diagnosis codes 

Congenital Cataract 743.30-.34 

Traumatic Cataract 366.20 

Juvenile Cataract 366.00-.11 

 

Condition Must be age 50 or older at the time 

of surgery 

 

Control 

criteria  

Condition Absence of cataract procedure codes See codes above 

Absence of ICD-9 Codes See codes above 

Optical exam in last 2 years  

 

Identifying patients without a cataract is more difficult.  One could logically assume that 

subjects without a surgical procedure or cataract diagnosis codes should be classified as controls.  

As previously noted data found within the EHR has limitations and must be evaluated prior to 

accepting it as ground truth.  The control classification is dependent on several factors: 1) the 

longitudinal history of data found within the EHR or the length of time the patient has been cared 

for in the health system; 2) confirmatory tests; and/or 3) the workflow surrounding clinical data 

collection.  For example, a patient who had a routine optical exams and no indication of cataract 

diagnoses or procedures would likely be classified as a control, ñDefinitely absentò indicated in 

red on the condition continuum in figure 2.3. Another situation may involve a patient new to the 

health system who had a cataract previously removed.  The patient will most likely not have 

documented cataract procedures and/or diagnoses because they are new to the system.  The 

medical evaluation at the patientôs initial visit may not include an eye exam, thus no fact would 

be recorded.  In the last situation, a negation of cataract cannot be made without an eye exam, so 
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we would place the patient in either the ñNegative on inferenceò or ñNot enough data 

classificationsò on the continuum.   

2.2.3.2 Feature Identification   

In medicine, there is a distinction between anecdotal reports, syndromes (Syndrome, 

2010), and disease.  Anecdotal reports are generalized statements about something that is 

suspected for which no real evidence exists (anecdotal evidence).  A syndrome implies the co-

occurrence of several recognizable attributes (signs, symptoms or characteristics) that alert the 

clinician to the presence of other attributes (syndrome).  A disease implies that we understand 

something about the causal process and the symptoms that occur.  Often when a syndrome is first 

described, critical attributes are left out.  Physicians describe attributes that are easy to see within 

their practice. As indicated previously, it is relatively easy for a physician to identify several 

clinical attributes that classify small numbers of patients as definitely having (or not having) a 

disease or phenotype. It is more difficult to identify hidden attributes (attributes that are 

correlated with the initial attribute). This difficulty can lead to additional iterations when 

developing the phenotype model.  

2.2.4 Phenotyping Tools and Technologies 

Given the aforementioned challenges to EHR-driven phenotyping, the utility of using the 

EHR for phenotyping has been demonstrated in large-scale genomic studies (Ritchie et al, 2010; 

Peissig et al, 2012; Pakhomov & Weston, 2007; Kho et al, 2011).  A variety of tools and 

technologies have been developed to support using the EHR for research and phenotyping 

activities. Following is a description of the major technologies that have become popular in the 

past two decades. 

2.2.4.1 Data Warehouse   

A well-accepted axiom in informatics is that it is difficult, if not impossible, for a single 

database to perform optimally for both single patient queries (retrieving all the data for one 

patient) and cross-patient queries (such as finding all patients with a diabetes diagnosis that have 

had an elevated HgbA1c lab result within the past year).  A clinical data repository supporting an 

EHR is optimized for single patient queries and a data warehouse is optimized for cross patient 

queries.  The data warehouse is an extension of the EHR that combines data from the clinical 

data repository and other disparate clinical databases into an integrated repository that is 

maximized for population-based queries.  Data stored within the data warehouse is usually 

structured (or coded), standardized, time variant and relational in structure.  The efficiency of 

phenotypic queries is generally increased by the availability of a data warehouse.  
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2.2.4.2 Structured Queries and Data Manipulation 

Notably the most popular approach to phenotyping, structured queries take advantage of 

structured data found within the DW.  Structured queries use Boolean logic and programmable 

rules to identify patients with a given phenotype.  The basic Boolean logic can be embedded into 

computer programs using a variety of programming languages that allow interaction against 

tables in the DW.  Structured queries require less time and effort (in most situations), and are 

dependent on available coded data to classify patients.  Advanced analytic and data management 

approaches filter, transform and graphically present data in ways that allow humans to determine 

phenotyping parameters. A drawback of this approach is the person writing the structured queries 

has to write the code to pull the information and thus must know the criteria and structures of the 

database.  Many of the EHR-driven phenotyping efforts take advantage of these techniques as a 

way to characterize patients.  

2.2.4.3 Natural Language Processing 

Clinical documents found within an EHR are valuable sources of information for phenotyping 

(Goryachev et al, 2006).  In order to use information embedded in the textual documents, Natural 

Language Processing (NLP) is used to transform unstructured text data from the documents into 

a structured format that can be used for phenotyping.   Several NLP approaches and systems 

have been developed to extract concepts, measurements or clinical information on a variety of 

diseases and conditions.  Some of the more popular NLP systems are:  

 Medical Language Extraction and Encoding (MedLEE) - a system that was developed at 

Columbia University by Friedman et al. (Friedman et al, 1994, 1995), uses syntactic and 

semantic parsing of data.  This linguistic rule based system was originally designed for 

radiology reports (Mendonca et al, 2005; Friedman et al, 1994, 1995) and has since been 

expanded to other clinical domains (Friedman et al, 2004; Melton and Hripcsak, 2005; 

Peissig et al, 2012).   

 MetaMap - is a freely distributed NLP system that was originally designed to extract 

information from medical literature.  It was developed by Aronson et al. at the National 

Library of Medicine and maps to concepts found in the Unified Medical Language 

System Metathesarus (Aronson, 2001; Lindberg, 1993).  

 Knowledge Map Concept Identifier (KMCI) - a proprietary general purpose NLP system 

developed by Vanderbilt University (Denny, 2003, 2005,  2009). It supports concept 

identification and negation and is used for a variety of phenotyping initiatives to support 

genome-wide association studies.  
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 clinical Text Analysis and Knowledge Extraction System (cTAKES) -  Savova et al. from 

Mayo Clinic developed cTAKES.  cTAKES is an open source NLP system and consists 

of several modules placed into a pipeline architecture (Savova et al, 2010).   

Already there is a large body of research surrounding NLP and the ability to extract 

clinical concepts and data from text-based clinical notes (Friedman et al, 2004, Denny et al, 

2003, 2004, 2009; Peissig et al, 2007; Mendonca et al, 2005).  NLP has contributed significantly 

to both the accuracy and efficiency of developing EHR-based phenotyping algorithms 

(Pakhomov et al, 2007; Li et al, 2008; Peissig et al, 2012).   

Several studies have compared the accuracy of phenotypes developed using 

administrative coded data to phenotypes derived using NLP methods.  Pakhomov et al. found 

NLP to be superior over diagnostic coding to detect patients with angina pectoris (chest pain) 

(Pakhomov et al, 2007).  Li et al. compared NLP to ICD-9 coding for extracting screening 

information from discharge summaries (Li et al, 2008). Several advantages were noted when 

using NLP, but the authors indicated that more study was needed.  Elkin et al. used Mayo 

Clinicôs Vocabulary Parser to code SNOMED-RT diagnoses from clinical documents and found 

the Vocabulary Parser to be significantly better than ICD-9 coding when evaluating 10 

diagnostic conditions (Elkin et al, 2001). A study by Saria et al. demonstrated that combining 

EHR coded data with a natural language processing approach boosts model accuracy 

significantly over the language approach alone, when identifying complications of pre-mature 

infants (Saria et al, 2010).   Although these studies have indicated the superiority of NLP over 

structured query approaches one must evaluate the phenotype and EHR to determine the best 

approach for phenotyping.  The approach may vary depending on phenotype and EHR. 

2.2.4.4 Optical Character Recognition  

The use of optical character recognition (OCR) technology provides the ability to extract 

clinical information from image documents.  Often figures or documents are scanned into the 

EHR that contain clinically relevant information for research.   OCR technology is used to 

interpret characters and/or symbols found within the document. The software is trained to 

recognize characters or symbols and then translates the characters/symbols into usable data.  Kim 

and Yu developed an OCR tool to extract data from biomedical literature figures (Kim, 2011).  

Rasmussen et al. applied OCR to identify cataract subtypes phenotypes in patients for genome-

wide association study phenotyping (Rasmussen, 2011; Peissig, 2012).  

2.3 MACHINE LEARNING  

Machine learning (ML) is a computational discipline aimed at creating algorithms that 

allow computers to use large amounts of data to build predictive models or to recognize complex 
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patterns or characteristics within data. The advantage of using ML approaches is that computers 

donôt have to be programmed with the explicit patterns in advance, but can find the most 

informative patterns by examining the data.   

Supervised learning is one type of machine learning that learns patterns (or hypotheses) 

between inputs and outputs to predict future outcomes or values (Getoor and Taskar, 2007). The 

supervision comes from a training set of examples that are labeled with an attribute of interest 

that we would like to predict from the other attributes. This attribute is typically called the 

response variable or response; if it is nominal, it may also be called the class. A hypothesis, or 

predictive model, is constructed from a space of predictors.  Over time, many different 

supervised learning approaches have been developed and applied to the health care domain.  The 

NLP and OCR phenotyping methods previously reported rely on supervised learning methods.  

Mitchell provides a general overview of approaches used for machine learning (Mitchell, 1997). 

These methods are based on the inductive learning hypothesis which states that any hypothesis 

found to accurately label a large set of observed training examples is also likely to provide 

accurate labeling when applied to unobserved data. In the following section I provide an 

overview of the machine learning methods relevant to this research. 

2.3.1 Decision Trees  

Decision tree learning is similar to a series of if-then-else statements or a flow chart.  The 

learned model is represented by a decision tree (figure 2.4).  Each example is classified by 

starting at the root node of the tree.  Starting with 

the top node of the tree as the current node, the 

attribute test at that node is applied to the example 

by comparing the test value in the node with the 

attribute value in the example. One branch from 

the current node is consistent with the attribute 

value for the example, and we proceed down that 

branch.  The end of a branch is represented by a 

leaf, which provides the predicted value for the 

response variable.   

Decision trees are used for classification or 

prediction.  They are easy to understand, implement and used to visually and explicitly represent 

decisions. Decision trees can be divided into two main types: 1) a classification tree when the 

result of the learning activity results in a prediction of a classification (i.e. predicting if a patient 

will have a heart attack); and 2) a regression tree which results in a prediction of some type of 

value (i.e. predicting the amount or level of coumadin needed to thin ones blood after a hip 

Figure 2.4:  Decision Tree Example  

(Example from Struyf et al, 2008) 
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replacement surgery to prevent blood clots).  Construction of a decision tree from data, or 

training of a decision tree, proceeds by recursively partitioning the data based on some scoring 

function for the purity of a node, such as information gain or Gini gain.  The next section 

discusses this process in greater detail for the specific algorithm ID3, which uses information 

gain. Gini gain will be described later in this chapter with Classification and Regression Trees. 

2.3.1.1 Interactive Dichotomizer 3 

A popular decision tree algorithm is Interactive Dichotomizer 3 (ID3) (Quinlan, 1986) 

and successors C4.5 and C5.0.  These algorithms employ top-down classification where an 

instance is classified by starting at the root node of the tree.  Each attribute is tested and then 

continues down the branch if the value corresponds to a node value.  The process is repeated for 

the sub-tree rooted at the new node.  A greedy search is used to search the space of possible 

decision trees meaning that the algorithm does not backtrack to consider earlier choices once a 

candidate attribute is chosen. ID3 uses an information gain measure to select from candidate 

attributes at each step while growing the tree. Information gain is a measure of difference 

between two probability distributions.  Simply put, information gain is the expected reduction in 

entropy caused by knowing the value of the attribute.  Information gain is calculated using the 

following formula: 

 

where: IG denotes information gain 

H denotes information entropy (definition follows) 

Y denotes an attribute, or variable 

X denotes the class (response) variable 

Information gain is based on information theory concept of entropy (Shannon, 1948), 

which measures the uncertainty in a random variable (Mitchell, 1997).  For example, suppose 

there is a variable that has three values: A, B, and C. If the collection of values for the variable 

occurs randomly (see figure 2.5.A), the variable is said to have high entropy and each value has 

an equal chance of being selected or used.    If on the other hand, the collection of values are 

non-randomly distributed (see figure 2.5.B), the variable is said to have low entropy.  In this 

situation, value B occurs more frequently than A or C.  

In figure 2.5.A above, the entropy is closer to 1 (because of randomness) and the values 

sampled from it would be roughly evenly distributed.  Figure 2.5.B, entropy is closer to 0 and the 

values sampled would be more predictable with the selection of B often (Moore, 2003).  Entropy 

is calculated using the following formula: 

H(X) = (p1 log2 p1) ï (p2 log2 p2) - é pm log2 pm  

=  
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where H(X) is the entropy of X; and p is the probability; (Moore, 2003) 

 

An advantage of ID3, and decision trees in general, is that they can learn non-linear 

classifiers.  Another is that its greedy search makes it computationally efficient.  A limitation of 

ID3 is it does not perform backtracking in its search.  Once it selects an attribute to test, it does 

not reconsider its choice and thus could converge to a locally optimal solution that may not be 

globally optimal.  A related limitation is that ID3 only maintains a single current hypothesis.  By 

doing so it loses the capability to explicitly represent all consistent hypotheses.  ID3 also 

operates using selection bias for trees that place attributes with highest information gain closest 

to the root, which in turn favors shorter trees over longer ones. When using ID3 and other 

decision tree algorithms, caution should be taken to avoid over-fitting of the tree to the training 

data.  Pruning the tree may be needed to make algorithms more generalizable.  

2.3.1.2 C4.5 

One of the best-known and most widely used learning algorithms is C4.5, which is an 

improved version of Quinlanôs ID3 algorithm.  A limitation of ID3 is that it favors attributes with 

large numbers of divisions, which leads to over fitting.  The C4.5 algorithm is designed to 

overcome the disadvantages of information gain and is sensitive to how broadly and uniformly 

the attribute splits the data (Quinlan, 1993).  The C4.5 algorithm handles continuous data and can 

deal sensibly with missing values by treating it as a separate value.  It also has capabilities to 

prune a tree when using noisy data.   It also has the capability to develop rules by greedily 

pruning conditions from each rule if it reduces the estimator error of the training data.  A 

disadvantage of using C4.5 is that it is computationally slow when using large and noisy 

datasets.  A commercial version C.50 uses a similar technique but is much faster.  
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Figure 2.5:  High and Low Entropy 
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2.3.1.3 Classification and Regression Trees 

Classification And Regression Tree (CART) rule-based classifier is a non-parametric 

decision tree learning technique that is used to create decision lists (sets of rules) (Breiman, 

1984). CART builds classification or regression trees for numeric attributes (regression) or 

categorical attributes (classification). The algorithm will identify the most significant variables 

by forming a partial decision tree and turns the ñbestò leaf into a rule with each iteration.  At 

each node, the available attributes are evaluated on the basis of separating the classes of training 

examples.  The tree building process entails finding the best initial spit at the root node. A 

popular splitting function used by CART is the Gini index, which is described in the next 

paragraph.  For each sub-node, we find the best split for the data subset at the node and continue 

this until no more splits are found.  We then prune the nodes to maximize generalizability.   

The CART algorithm uses the Gini index (also referred to as Gini coefficient or Gini 

impurity), to determine how to evaluate splits.  The Gini index is a measure how often a 

randomly selected element from a set would be incorrectly labeled if it were labeled using the 

distribution of labels in the subset. A best split is the one that maximizes the purity (a single class 

is primarily represented) for an attribute. The Gini index (Breiman et al, 1948) is calculated as 

follows:   

  

where pj is the relative frequency in class C. 

In figure 6, we see that the root node (represented by a variable with 2 classes of data), 

has a Gini index of 0.5.  Using the equation above, we would calculate the index in the following 

way:   = 0.5.  Once the splitting of C occurs into two subsets C1 and 

C2 with a size of N1 and N2, the Gini index for the split is calculated using the this equation: 

 

This equation considers the number of elements in the sub-node and weights the Gini 

index calculated for each sub-node by the sub-node weight (the total elements for the sub-node / 

total number of elements represented by all sub-nodes).  The result is an index that can be used 

Figure 2.6:  Gini Splitting at Root and Sub-nodes 
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to select the split. Figure 2.6 illustrates the calculation of the Gini index for the root node and 

Gini split.  In this example attribute B (smallest Gini split (C)) is chosen to split the node 

(Rokach and Maimon, 2010).    

2.3.2 Association Rule Learning 

Association rule learning is based on the premise that given a set of transactions, find the rules 

that will predict the occurrence of an item based on the occurrence of other items in the 

transaction.  This approach is commonly used in Market-basket transactions and implies co-

occurrence not causality.  The mining task goal is to list all possible association rules and then 

compute the support and confidence for each rule and prune rules that fail to meet the minimum 

support and confidence thresholds.  This approach is computationally prohibitive and thus the 

number of candidates, transactions or comparisons must be limited (Liu, Hsu and Ma, 1998).    

2.3.3 Bayesian Networks 

 A Bayes network (BN) is a 

graphical structure that allows us to easily 

understand and reason about an uncertain 

domain (Mitchell, 1997). The nodes of a 

Bayesian network represent random 

variables (denoted in figure 2.7 as A, B, C, 

D, and E) and the lines between the nodes 

are directed arcs or links that represent 

dependencies between the variables.  These 

directed arcs depict the direction of the 

relationship between a parent node (e.g. A) 

and child node (e.g. C).  The strength of the 

relationship between the nodes is 

quantified using a conditional probability 

table (CPT).  The only constraint 

surrounding the Bayesian network is that 

there cannot be any directed cycles.   In 

figure 2.7 there is a directed cycle between nodes A, C and D (represented by the dashed line).  

One cannot return to a node simply by following the directed arcs as shown with arc DA. 

Another assumption is based on the Markov property and implies that there are no direct 

dependencies in the system being modeled that are not shown via arcs. Bayesian networks 

having this property are called independence-maps. In the example provided in figure 2.7, the 

Figure 2.7:  Example of Bayesian Network and Conditional 

Probability Tables 
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joint distribution table for nodes A, C, and B is represented by the ñCPT for nodes ACBò.  This 

table provides probabilities for C based on the combination of values that A and B contribute.  

For example, the probability of C given A and B are both true is 0.9.  If new information is 

obtained, we update the distribution based on relevant data points that correspond to the CPT 

entry. 

  A Bayesian network specifies the full joint distribution over its random variables.  The 

nodes are represented using x1 to xn and the value in the joint distribution is represented by P(x1, 

x2, é xn), where P is the product of the joint distributions.  The chain rule of the probability 

theory (Russell and Norvig, 2003), allows us to show the basic equation as: 

  

To create a Bayesian network, we first have to identify the random variables in the 

network and capture the relationships between the nodes using arcs, as illustrated in figure 2.7. 

Each random variable in the BN has values that are both mutually exclusive and exhaustive. The 

variables can be Boolean nodes (true or false); ordered values (cold, warm, hot); or integral 

values (weight = 20kg ï 200kg).  Using a simplified version of Pearlôs Network Construction 

Algorithm (Pearl, 1988), the following steps occur:  1) choose a set of relevant variables for {Xi} 

where Xi represents a random variable or node that describe the domain; 2) order the variables 

<X1, é Xn>; 3) Start with an empty network and add variables one at a time until there are no 

variables; For each variable Xi ; add the arcs to the Xi node from already existing nodes in the 

network (Parents of Xi) and satisfy the conditional independence property; then define the CPT 

for Xi.  The conditional independence property is: 

  

 where  are all variables that precede  

For each node in the network we have to identify a complete setting for all variables.  We also 

assume that the data set we are using is a random sample from the distribution that weôre trying 

to model.  If available, we can use a prior distribution and simply update the distribution based 

on the relevant data points (that agree with the settings for the parents that correspond with the 

CPT entry.) This is referred to as a Dirichlet distribution (Geiger and Heckman, 1995). Stated 

simply a Dirichlet distribution is a distribution over a distribution.   

One challenge when using Bayesian networks is to represent hidden variables.  These 

variables may affect the Bayesian network, but because they are hidden, cannot explicitly be 

measured and thus not included in the network (Page, 2013).  We may want to include a node in 

the network to represent this phenomenon.  Other variables can be used to predict the hidden 

variable and the hidden variable can also be used to predict other variables. Trying to estimate 

CPTs for this is difficult because none of our data points have a value for this variable. The 

general EM framework addresses this problem and is used to estimate CPTs for hidden variables 
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(Page, 2013).  The first step in the EM framework is to calculate the expectation (E), over the 

missing values for the given model. The second step is maximization (M), which replaces the 

current model with a Dirichlet distribution that maximizes the probability of the data.     

There are situations where calculating missing or sparse information is resource intensive 

and the number of structures created is exponential.  Finding an optimal structure is NP-

complete, meaning there is no known efficient way to locate a solution.  Two common options 

are used in this situation: 1) severely restrict the possible structures and use Tree-Augmented 

Naïve Bayes (Friedman, Geiger and Goldszmidt, 1997); or 2) use a heuristic search (such as 

sparse candidate) (Friedman, Nachman and Peôer, 1999).    

2.3.4 Relational Learning 

Over the last decade, ILP and other methods for relational learning (Getoor and Taskar, 

2007) have emerged within the ML domain to address the complexities of multi-relational data. 

These relational learning methods have been used with EHR data in studies ranging from 

screening for breast cancer (Burnside et al, 2009; Liu et al, 2012) to predicting adverse drug 

events (Davis et al, 2008; Weiss et al, 2012) or adverse clinical outcomes (Page et al, 2012; Berg 

et al, 2010; Kawaler et al, 2012; Davis et al, 2012). 

Unlike rule induction and other machine learning algorithms that assume each example is 

a feature vector, or a record, ILP algorithms work directly on data distributed over different 

tables for diagnoses, labs, procedures, prescriptions, etc. ILP algorithms search for non-recursive 

Datalog rules, equivalent to SQL queries or relational algebra expressions, that differentiates 

positive examples (e.g., cases) from negative examples (e.g., control patients) given background 

knowledge (e.g., EHR data). The algorithmic details of leading ILP systems have been 

thoroughly described (Dzeroski and Lavrac, 2001; Inductive logic programming). In a nutshell 

ILP uses a covering algorithm adopted from rule induction algorithms to construct a set of rules, 

known as ñclausesò. The covering algorithm starts with an empty set of clauses, or empty 

hypothesis, and searches for a clause that maximizes a score of positive vs. negative examples 

explained by the clause, adds the clause to the hypothesis, and removes the positive examples 

explained. These steps are repeated until all the positive examples have been explained.  

Rules or clauses are constructed by starting from an unconditional rule, or empty clause, 

and adding antecedents to the rule one by one. New antecedents are generated by enumerating 

possible calls to the database. For example, ILP could enumerate the diagnosis codes reported in 

the database. Ideally, one would only look for clauses that explain positive examples and do not 

explain, or cover, any negative examples. In practice, ILP must deal with inconsistent and 

incomplete data hence it uses statistical criteria based on the number of positive and negative 

explained examples to quantify quality. Two simple criteria are to score clauses by the fraction 
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of covered examples that are positive, which is precision, or by the number of positive examples 

minus the number of negative examples covered by the clause.  

2.3.4.1 Inductive Logic Programming Explanation 

Inductive Logic Programming (ILP) addresses the problem of learning (or inducing) first-

order predicate calculus (FOPC) rules from a set of examples and a data-base that includes 

multiple relations (or tables). Most work in ILP limits itself to non-recursive Datalog 

(Ramakrishnan, 2003), a subset of FOPC equivalent to relational algebra or relational calculus.  

Consequently it builds upon the concept of an IF-THEN rule. IF-THEN rules are one of the most 

popular representations in data-mining and machine learning, and are of the form shown in this 

example: 

IF Sunny AND Vacation THEN PlayOutside 

This rule states that if it is sunny and vacation time, it is time to play outside. Observe 

that the rule implicitly refers to an individual. First-Order rules use variables to make it explicit 

the individuals, to which they refer to, making it possible to refer to different individuals. As an 

example, we use Mitchellôs (Mitchell, 1997) Datalog rule for granddaughter: 

IF Father(x,y) AND Mother(y,z) AND Female(z) THEN GrandDaugther(x,z) 

x, y, and z are variables that can be set (or bound) to any person, but only the values consistent 

with the database will make the rule true. Notice that not only does this rule refer to multiple 

individuals, but that it also refers to multiple tables in the database, or predicates: Father, Mother, 

and Female. This ability to mention different individuals whose properties are spread over 

different tables, added to the fact that rules have an intuitive translation to natural language, 

makes Datalog rules a powerful and natural representation for multi-relational learning. 

A large number of different learning algorithms have been proposed for learning rules 

within ILP (De Raedt, 2008). All these algorithms are designed to search for good rules, and they 

do so by constructing rules, evaluating the rules on the data, and selecting the rules that do well 

according to pre-defined criteria. The first widely-used algorithm, Quinlanôs FOIL (Quinlan and 

Cameron-jones, 1995), executes by first generating all possible rules of size 1, then all rules of 

size 2, and so on until either it finds good rules, or it reaches some threshold and stops.  

The problem with FOIL is that in most domains there are a large number of possible rules 

one can construct. For example, in a typical EHR, we may find over 5,000 different diagnoses 

codes, over 3,000 different medications, and thousands of different possible labs and procedures 

(Muggleton, 1995). Rules must refer to specific conditions, drugs, or labs and in this case, 

applying the FOIL procedure would generate at least 10,000 different rules of size 1, over 

10,0002 clauses of size 2, and so on. Unfortunately, evaluating these rules over thousands or 

maybe millions of patients is not practical. 
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In this work I use Muggletonôs Progol algorithm (Linder, Bates and Middleton, 2007), as 

implemented in Srinivasanôs Aleph system (Ashwin, 2001). Progol improves on FOIL by 

applying the idea that if a rule is useful, it must explain (or cover) at least one example. Thus, 

instead of blindly generating rules, Progol first looks in detail at one example, and it only 

constructs rules that are guaranteed to cover that example. In other words, Progol still generates 

rules in the same fashion as FOIL but it uses an example, called a seed, to guide rule 

construction. The benefit is that instead of having to generate a rule for the thousands of 

conditions, drugs and labs in the data-base, we can generate rules for the much lesser number of 

conditions that affect a patient. 

2.3.4.2 Inductive Logic Programming Progol Algorithm 

In more detail, the Progol Algorithm is as follows: 

 Select an example not yet explained by any rule. In the EHR domain, an example is a 

patientôs clinical history.  

 Search the data-base for data directly related to the example. In the case of an EHR, this 

means collecting all diagnoses, prescriptions, lab results, for the selected patient. 

 Generate rules based on the patient, using the FOIL algorithm. The rules will be 

constructed from the events of the chosen patientôs history, but must also explain other 

patients. This is achieved by replacing the references to the actual patient and temporal 

information by variables. The procedure stops when it finds a good rule (according to the 

criteria I discuss later). 

Remove the examples explained by the new rule. If no more examples remain, learning is 

complete. Otherwise, repeat the process on the remaining examples, starting from step 1. 

ILP learning is thus somewhat different from learning with a propositional system or single 

table, as most ML algorithms do. Instead of using a single table, the first step must be to define 

which tables are of interest to the learning process. Notice that it is not necessary for tables to be 

materialized; implicit tables or views may also be used (Davis et al, 2005). 

The second step is to parameterize the search. In the case of phenotyping, accepted rules 

should cover very few, ideally zero, negative examples. Next, rules that succeed on very few 

examples tend to over fit: a useful heuristic is that a rule is only acceptable when it covers at 

least 20 examples. Last, search time heavily depends on the maximum number of rules that are 

considered for each seed.  

The actual search process is automatic. The output is a set of rules (or theory). Each rule 

will cover at least one example, and quite often more than one example. Notice that whether a 

rule covers an example or not, the rule may be seen as a property, or attribute (that is true or 

false), of the example.   



23 

 

  

 

2
3
 

 If ILP learned rules can be seen as attributes, we can construct classifiers that combine 

the output of the rules. Any classifier can be used. In this work, we use the TAN Bayesian 

networks, an extension of naïve Bayes that better addresses correlated attributes, as we have had 

previous good results in using TAN for related tasks and it produces probabilities for examples 

being true (Davis et al, 2005). 

2.3.4.3 Statistical Relational Learning  

Statistical relational learning (SRL) combines graphical model approaches (denoting 

explicit models of uncertainty) with ILP to construct probabilistic models to analyze relational 

databases. The SRL approaches learn the joint probability distributions of fields in the relational 

database to predict disease outcomes and support noisy, uncertain and non-i.i.d. real world data 

(Muggleton, King and Sternberg, 1992). There are a variety of SRL approaches that address 

EHR data issues such as: 1) missing and incomplete data; and 2) large amounts of data causing 

long run times.  Natarajan et al. utilized probability distributions instead of binary responses like 

ñtrueò or ñfalseò when learning relationships among fields. This enabled SRL to quickly build 

classifiers that can easily track significant improvements in the prediction algorithm (Getoor and 

Taskar, 2007).   

2.4 EHR CHALLENGES WITH MACHINE LEARNING  

The data from EHRs pose significant challenges for classical machine learning and the 

data mining approaches (Getoor and Taskar, 2007; Page et al, 2012).  First, there are millions of 

data points represented for each patient within the EHR (Linder et al, 2007).  Knowing which 

facts to use and how they relate often requires clinical intuition. Second, EHR data has multiple 

meanings. For example, in some cases an ICD-9 diagnosis code is linked to an explanation that 

laboratory tests are being done in order to confirm or eliminate the coded diagnosis, rather than 

to define that the patient has diagnosis. Third, there is missing measurement data. Finally, an 

EHR is multi-relational, and classical machine learning methods require ñflatteningò of the data 

into a single table. Known flattening techniques, such as computing summary features or 

performing a database join operation could result in loss of information (Getoor and Taskar, 

2007).  

 

2.5 MACHINE LEARNING AND PHENOTYPING  

One possible approach to constructing high quality phenotype definitions is to apply the 

mathematical discipline of Machine Learning.  Machine Learning is aimed at designing and 

creating algorithms that allow computers to develop behaviors based on use of empirical data, 
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utilize large amounts of data to build predictive models or to recognize complex patterns.  

Machine learning has been used successfully in a variety of non-health care domains to discover 

relationships within large databases (data mining) and to provide insight when humans did not 

have enough knowledge of the data to develop effective predictive models of discovery.  

Machine learning has also been used in the health care domain in the context of natural language 

processing to pull concepts and information from textual documents (Roberts et al, 2009) and for 

genomic discoveries.  

The Machine learning literature is predominantly filled with research highlighting the 

design and development of machine learning algorithms.  The empirical results of this type of 

research aim to answer the question: Is algorithm ñAò better than algorithm ñBò?   ñBetterò is 

usually measured in terms of accuracy and reported in terms of error rates; precision/recall; 

sensitivity/specificity; positive/negative predictive value; area under the ROC or precision/recall 

curve; F-score; or some statistical tests such as t-tests that show the differences based on cross 

validation goals or by bootstrapping.   

Recently there has been interest in using machine learning or machine learning systems 

as a tool for EHR-based phenotyping to both improve the accuracy of the phenotypes and also 

reduce the time needed to develop the EHR-based algorithms. Because of the limited duration of 

EHR implementations, research relating to EHR-based phenotyping is relatively new and there 

have not been any literature reviews describing the application of machine learning to the 

domain.  The following section will examine the evidence regarding the application of machine 

learning algorithms to the EHR-based phenotyping process to evaluate if accuracy has improved 

or if time was reduced when compared to the traditional physician-lead phenotyping process.   

2.5.1 Machine Learning Phenotyping Literature Review  

In July of 2011, I conducted a literature review to evaluate the potential role of using ML 

techniques to improve the accuracy or reduce the time of EHR-driven phenotyping.  Only studies 

that characterized subjects using coded data from the EHR were considered for this review.  In 

addition, the studies had to involve some type of phenotyping activities using both machine 

learning algorithms and some comparison against the traditional physician-lead approach to 

phenotyping.  The outcome of the comparison would be some measure of algorithm diagnostic 

accuracy (the ability to identify a phenotype correctly using the algorithm).     

A total of 571 studies were screened for inclusion by reviewing the title.  Of those, a total 

of 60 unique articles were selected for a more detailed abstract review.  Thirty of the abstracts 

screened articles were eliminated because the content did not demonstrate EHR-based 

phenotyping efforts.  These studies could be categorized as: 
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 Prospective, screening, prediction or prevalence studies ï the focus was not on 

phenotyping (5, 16%) 

 Recruiting or system evaluation studies (11, 36%)  

 System or application development studies (5, 16%) 

 Natural language processing only studies (3, 10%) 

 Opinion or review papers (4, 13%) 

 Other (3, 10%) 

Of the remaining 30 studies, a total of six studies were identified as using ML approaches 

for phenotyping (Anand and Downs, 2010; Huang et al, 2007; Pakhomov et al, 2007; Wu et al, 

2010; Xu et al, 2011; Carroll et al, 2011). Only two of the six ML studies compared the accuracy 

of the ML approach to the traditional phenotyping processes, although there were limitations 

with the evaluations (Pakhomov et al, 2007; Carroll et al, 2011). 

There were considerable differences in ML approaches used, the phenotypes and 

approaches to validation.  The ML methods used by the six studies were: Support Vector 

Machines (SVMs), logistic regression, Ripper, Naïve Bayes, IB1, C4.5, Noisy-OR and recursive 

and adaptive Noisy-OR.  In addition, there were differences in phenotypes and outcome 

measures.   

A study by Carroll et al. (Carroll et al, 2011) indicated that it was possible to create high 

performance algorithms (using support vector machines) when training on naïve and refined data 

sets.  The algorithms significantly outperformed the traditional phenotyping approach.  This 

study also showed that future machine learning algorithm development may be possible with 

only small numbers of manually identified cases (about 50-100 cases) thus indicating less time 

needed for algorithm development and validation. This limits the generalizability of the results.  

In addition, only one non-blinded physician created the gold standard for the investigation.    

Pakhomov et al. (Pakhomov et al, 2007) conducted three phenotyping evaluations: 1) 

NLP with ICD9 diagnostic codes; 2) manual reviewed records with a ML-based approach; and 3) 

NLP to manually reviewed records.  A direct comparison between code-based phenotyping and 

ML-based methods was not done. This comparison was problematic for several reasons:  the 

sample sizes and populations were different between each of the comparisons and the reference 

dataset (billing diagnoses) was not properly validated for accuracy. 

Xu et al. (Xu et al, 2011) used a two-step process for case detection, which included 

document-level detection strategy of concepts related to colorectal cancer (CRC) and a patient-

level case determination module.  Using the two-step process provided more accurate case 

detection when compared to either method of the two-step process.  Random Forest, Support 

Vector Machines, Logistic Regression and Ripper were ML-based methods that were used on the 

patient-level data to detect cases. There was no direct comparison of this studyôs method against 

the traditional phenotyping process although the authors did note that it was difficult to define 
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explicit rules by manual review of aggregated data. ML-based approaches were employed to 

automatically find the useful patters to determine if a patient was a CRC case. Using this 

approach could simplify algorithm development.   

The remaining three studies made comparisons between ML-based approaches as they 

were applied to a specific phenotyping activity.  Amand (Anand and Downs, 2010) compared a 

Bayesian Network (BN) approach to reformulated BN using Noisy-OR, recursive Noisy-OR and 

adaptive Noisy-OR approaches.  Wu et al. (Wu et al, 2010) compared Boosting and SVM to the 

application of identifying heart failure patients.  Finally, Huang et al. (Huang et al, 2007) 

identified Type 2 diabetic patients using Naïve Bayes, IB1 and C4.5 classification techniques. 

There were no comparisons made to the physician-led traditional approach.   

In the past year and a half, there have been two other notable studies published that used 

machine learning for phenotyping.  Dingcheng et al developed an Apriori association rule-

learning algorithm to phenotype type 2 diabetics (Dingcheng et al, 2013). This work is similar to 

the relational learning ILP method as they both take advantage of learning rules for phenotyping 

that are easily understood by human users. The primary difference between the approaches is 

that relational learning can directly learn from the tables of the EHR versus Apriori, which must 

learn from data conflated into a single table. The authors reported positive predictive values 

greater than 90% for their algorithm.   

Carroll et al conducted another study using rheumatoid arthritis as the phenotype.  This 

was a multi-site study and combined structured query phenotyping with NLP methods.  The 

cross-site accuracy estimates were greater than 95% positive predictive value once the 

algorithms were adjusted for site variation. This study used NLP that was based on a ML 

framework and not consistent with the literature review methods stated above.  The study was 

however noteworthy because of its multi-site nature and high predictive values for the algorithm 

(Carroll et al, 2012). 

In summary, there are only a few articles, which present research surrounding the 

application of ML, using coded data, for the phenotyping process. From these evaluations, there 

is some evidence that suggest ML improves the accuracy of the phenotyping process.  These 

studies applied a variety of classical or rule-based ML approaches that took advantage of data 

placed into a fixed length feature table for analysis.  The feature tables, which are critical for the 

supervised learning task, were based on input from experts (physicians) and/or available 

validated classified subjects.  There have been no studies that have used the relational learning 

methods, which take advantage of the EHRôs relational structure.  
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CHAPTER 3    

Importance of Multi -modal Approaches to Effectively Identify Cataract Cases 

from Electronic Health Records 

As noted in the two preceding chapters, there is increasing interest in using electronic 

health records (EHRs) to identify subjects for genomic association studies, due in part to the 

availability of large amounts of clinical data and the expected cost efficiencies of subject 

identification. In this chapter I describe the construction and validation of an EHR-based 

algorithm to identify subjects with age-related cataracts.  The approach used in this chapter is a 

multi-modal strategy utilizing many of the computational methods surveyed in the previous 

chapter, ranging from structured database querying, natural language processing (NLP) on free-

text documents and optical character recognition (OCR) on scanned clinical images.  The goals 

are to identify cataract subjects and related cataract attributes. Extensive validation on 3657 

subjects compared the multi-modal results to manual chart review. The algorithm was also 

implemented at participating electronic MEdical Record GEnomics (eMERGE) institutions.   I 

demonstrate that this multi-modal computational strategy makes it possible to more efficiently 

and with a high degree of accuracy characterize research subjects using EHR data, thus 

supporting my thesis statement.   

3.1 BACKGROUND  

Marshfield Clinic is one of five institutions participating in the electronic MEdical 

Records and GEnomics (eMERGE) (eMERGE, 2010); McCarty CA et al, 2011; Kho et al, 

2011). One of the goals of eMERGE is to demonstrate the viability of using electronic health 

record (EHR) systems as a resource for selecting subjects for genome-wide association studies 

(GWAS). Marshfieldôs GWAS focused on revealing combinations of genetic markers that 

predispose subjects to the development of age-related cataracts. Cataract subtypes and severity 

are also important attributes to consider, and possibly bear different genetic signatures (McCarty 

et al, 2003). Often, clinically relevant information on conditions such as cataracts is buried 

within clinical notes or in scanned, hand-written documents created during office visits, making 

this information difficult to extract.  

Cataracts are the leading cause of blindness in the world (Thylefors et al, 1994), the 

leading cause of vision loss in the United States (U.S.) (Congdon et al, 2004), and account for 

approximately 60% of Medicare costs related to vision (Ellwein & Urato, 2002). Prevalence 

estimates indicate that 17.2% of Americans residing in the U.S. aged 40-years and older have a 

cataract in at least one eye, and 5.1% have a pseudophakia/aphakia (previous cataract surgery) 

(Congdon et al, 2004). Age is the primary risk factor for cataracts. With increasing life 

expectancy, the number of cataract cases and cataract surgeries is expected to increase 

dramatically unless primary prevention strategies can be developed and successfully 

implemented.  



28 

 

  

 

2
8
 

There is a growing interest in utilizing the EHR to identify clinical populations for 

GWAS (1; Manolio, 2009; Wojczynski & Tiwari, 2008) and pharmacogenomics research 

(McCarty et al, 2011; Wilke et al, 2011; McCarty, 2010). This interest results, in part, from the 

availability of extensive clinical data found within the EHR and the expected cost efficiencies 

that can result when using computing technology. As in all research that attempts to identify and 

quantify relationships between exposures and outcomes, rigorous characterization of study 

subjects is essential and often challenging (Bickeboller et al, 2003; Schulz et al, 2004). 

In this chapter, I describe the construction and validation of a novel algorithm that 

utilizes several techniques and heuristics to identify subjects with age-related cataracts and the 

associated cataract attributes using only information available in the EHR. I also describe a 

multi-modal phenotyping strategy that combines conventional data mining with natural language 

processing (NLP) and optical character recognition (OCR) to increase the detection of subjects 

with cataract subtypes and optimize the phenotyping algorithm accuracy for case detection. The 

use of NLP and OCR methods was influenced by previous work in the domain of biomedical 

informatics that has shown great success in pulling concepts and information from textual and 

image documents (Govindaraju, 2005; Milewski & Govindaraju, 2004; Piasecki & Broda, 2007).  

I was also able to quantify the accuracy and recall of the multi-modal phenotyping components. 

Finally, this algorithm was implemented at three other eMERGE institutions, thereby validating 

the transportability and generalizability of the algorithm. The fact that other institutions were 

able to run the algorithm and obtain high precision (between 95-100%), is worth noting. 

3.2 SIGNIFICANCE AND CONTRIBUTION  

EHR-based phenotyping is a process that uses computerized analysis to identify subjects 

with particular traits as captured in an EHR. This process provides the efficiency of utilizing 

existing clinical data but also introduces obstacles, since those data were collected primarily for 

patient care rather than research purposes. Previously described EHR data issues include a lack 

of standardized data entered by clinicians, inadequate capture of absence of disease, and wide 

variability among patients with respect to data availability (this availability itself may be related 

to the patient's health status) (Wojczynski & Tiwari, 2008; Gurwitz et al, 2010). Careful 

phenotyping is critical to the validity of subsequent genomic analyses (Bickeboller et al, 2003), 

and a source of great challenge due to the variety of phenotyping options and approaches that can 

be employed with the same data (Schulze et al, 2004).  

Previous investigators have demonstrated successful use of billing codes and NLP for 

biomedical research (Denny et al, 2010; Peissig et al, 2006; Ritchie et al, 2010; Kullo et al, 2010; 

Savova et al, 2010). Most often, the focus in the informatics domain is on the application and 

evaluation of one specific technique in the context of a disease or domain, with a goal of 

establishing that techniqueôs utility and performance. For example, Savova et al. (Savova et al, 

2010;) evaluated the performance of Clinical Text Analysis and Knowledge Extraction System 

(cTAKES) for the discovery of peripheral arterial disease cases from radiology notes. Peissig et 
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al.(Peissig et al, 2006) evaluated the results of FreePharma® (Language & Computing, Inc., 

http://www.landc.be) for the construction of atorvastatin dose-response.  

Existing research has also demonstrated the ability to use multiple techniques as part of 

the implementation of a phenotyping algorithm (Kullo et al, 2010), but few have attempted to 

quantify the benefits of a multi-modal approach (conventional data mining, NLP and OCR). 

Those that have were able to demonstrate the benefits of two approaches (commonly coded data 

in conjunction with NLP) over a single approach that was limited to a single domain (Kullo et al, 

2010; Rasmussen et al, 2011). Although the use of multiple modes for phenotyping is practical, 

no known work has explored beyond a bimodal approach. The research presented here 

demonstrates the ability to implement a tri-modal phenotyping algorithm including quantification 

of the performance of the algorithm as additional modes are implemented. 

3.3  METHODS 

3.3.1 Marshfieldôs Study Population 

The Personalized Medicine Research Project (PMRP) (McCarty et al, 2005; McCarty et al, 

2008), sponsored by Marshfield Clinic, is one of the largest population-based biobanks in the 

U.S. The PMRP cohort consists of approximately 20,000 consented individuals who provided 

DNA, plasma, and serum samples along with access to health information from the EHR and 

questionnaire data relating to health habits, diet, activity, environment, and family history of 

disease. Participants in this cohort generally receive most, if not all, of their primary, secondary, 

and tertiary care from the Marshfield Clinic system, which provides health services throughout 

Central and Northern Wisconsin. This research was approved by the Marshfield Clinicôs 

Institutional Review Board. 

3.3.2 Electronic Medical Record 

 Founded in 1916, Marshfield Clinic is one of the largest comprehensive medical systems in the 

nation. CattailsMD, an internally developed EHR at Marshfield Clinic, is the primary source of 

EHR data for this investigation. The EHR is deployed on wireless tablets and personal computers 

to over 13,000 users, including over 800+ primary and specialty care physicians in both inpatient 

and outpatient healthcare settings. Medical events including diagnoses, procedures, medications, 

clinical notes, radiology, laboratory, and clinical observations are captured for patients within 

this system. EHR-coded data are transferred daily to Marshfield Clinicôs Data Warehouse (DW) 

and integrated with longitudinal patient data, currently providing a median of 23 years of 

diagnosis history for PMRP participants. In addition to the coded data, Marshfield has over 66 

million electronic clinical narrative documents, notes, and images that are available back to 

1988, with supporting paper clinical charts available back to 1916. Manual review of the 

electronic records (and clinical charts as needed) was used as the ñgold standardò when 

validating the EHR-based algorithms.  
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3.3.3 Cataract Code-based Phenotyping 

Cataract ñcasesò were identified using an electronic algorithm that interrogated the EHR-coded 

data found within the DW (figure 3.1). A goal of the electronic algorithm development was to 

increase the number of subjects identified for the study (sensitivity), while maintaining a positive 

predictive value (PPV) of 95% or greater. PPV is defined as the number of accurately classified 

cases over the total number of cases.  Cases had to have at least one cataract Current Procedural 

Terminology (CPT®) surgery code or multiple International Classification of Diseases (ICD-9-

CM) cataract diagnostic codes. In cases where only one cataract diagnostic code existed for a 

subject, NLP and/or OCR were used to corroborate the diagnosis. Cataract ñcontrolsò had to 

have an optical exam in the previous 5 years with no evidence of cataract surgery or a cataract 

diagnostic code or indication of a cataract when using either NLP and/or OCR. Since the focus 

of the eMERGE study was limited to age-related cataracts, subjects were excluded if they had 

any diagnostic code for congenital, traumatic, or juvenile cataract. Cases were further restricted 

to be at least 50-years-old at the time of either cataract surgery or first cataract diagnosis, and 

controls had to be at least 50-years-old at their most recent optical exam.   
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Figure 3.1:  eMERGE Cataract phenotyping algorithm. Overview of the cataract algorithm logic used when 

selecting the cataract cases and controls for the electronic MEdical Record and GEnomics (eMERGE) genome-wide 

association study. Cataract cases were selected if the subject had either a cataract surgery, or 2+ cataract diagnoses, 

or 1 cataract diagnosis with either an indication found using Natural Language Processing (NLP) or Optical 

Character Recognition (OCR). Controls had to have an optical exam within 5 years with no evidence of a cataract. 

Both cataract cases and controls had to be age 50 or older with controls requiring the absence of the exclusion 

criteria. The details of this algorithm are published on the eMERGE website (eMERGE, 2010). 

3.3.4 Cataract Subtype Multi-modal Phenotyping 

A multi-modal phenotyping strategy was applied to the EHR data and documents to 

identify information pertaining to nuclear sclerotic, posterior sub-capsular, and cortical (N-P-C) 

cataract subtypes, severity (numeric grading scale), and eye. Over 3.5 million documents for the 

PMRP cohort were pre-processed using a pattern search mechanism for the term ñcataractò. The 

strategy (figure 3.2) consisted of three methods to identify additional cataract attributes: 

conventional data mining using coded data found in the DW, NLP used on electronic text 

documents, and OCR used on scanned image documents. Conventional data mining was used to 

identify all subjects having documented N-P-C subtype (ICD9 codes 366.14ï366.16). 
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Figure 3.2:  Multi -modal Cataract Subtype Processing.  Overview of the information extraction strategy used in 

multi-modal phenotyping to identify nuclear sclerotic, posterior sub-capsular and/or cortical (N-P-C) cataract 

subtypes. This figure depicts the N-P-C subtype yield using two populations: 1) the left-most path of the figure 

denotes unique subject counts for the entire Personalized Medicine Research Project cohort; 2) the right-most path 

denotes unique subject counts for the identified cataract cases. A hierarchical extraction approach was used to 

identify the N-P-C subtypes. If a subject had a cataract subtype identified by an ICD-9 code, Natural Language 

Processing (NLP) or Optical Character Recognition (OCR) was not utilized. Cataract subtypes identified using NLP 

had no subsequent OCR processing. 

 

Prior to using NLP to identify N-P-C subtypes, a domain expert was consulted regarding 

documentation practices surrounding cataracts, who determined that the term "cataract" should 

always appear within a document for it to be considered relevant to the N-P-C subtypes. The 

reasoning behind this was to avoid any potential ambiguity when terms related to cataract 

subtype (i.e., "NS" as an abbreviation for ñnuclear scleroticò) appeared in a document with no 

further support related to a cataract. As all clinical documents were of interest, not just ones from 

ophthalmology, this rule enabled the application of a filter to the documents to be processed by 

NLP. The Medical Language Extraction and Encoding (MedLEE) NLP engine (MedLEE, 2011), 

developed by Friedman and colleagues (Friedman et al, 2004) at Columbia University, was tuned 

to the ophthalmology domain for this specific task to process documents from PMRP patients. 

MedLEE was chosen for its demonstrated performance in other studies (Melton & Hripcsak, 

2005; Friedman et al, 2004) and also given the experience of one of the authors (JS) with 

MedLEE in previous studies (Friedman et al, 1995; Starren & Johnson, 1996; Starren et al, 1995 

(1 & 2)). While MedLEE was chosen for Marshfieldôs implementation, the multi-modal 
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approach was created to be NLP engine-neutral, and other sites utilized the cTAKES (Savova et 

al, 2010) engine with comparable results.  

The NLP engine tuning involved iterative changes to the underlying lexicon and rules 

based on a training corpus of 100 documents. MedLEE parses narrative text documents and 

outputs eXtensible Markup Language (XML) documents, which associate clinical concepts with 

Unified Medical Language System (UMLS) Concept Unique Identifiers (CUIs (National Library 

of Medicine, 2003; Lindberg, Humphreys and McCray, 1993) with relevant status indicators, 

such as negation status. To identify general cataract concepts and specific cataract subtypes, 

specific CUIs were queried based on MedLEEôs output. Additional CUIs were used to determine 

in which eye the cataract was found. A regular expression pattern search was performed on 

MedLEE attributes to identify severity of the cataract and certainty of the information provided. 

Refer to figure 3.3 for an overview of the NLP process.  

 
Figure 3.3:  Natural Language Processing of Clinical Narratives. Textual documents containing at least one 

reference of a cataract term were fed into the MedLEE Natural Language Processing (NLP) engine and then tagged 

with appropriate UMLS Concept Unique Identifiers (CUIs) before being written to an XML formatted file. Post-

processing consisted of identifying the relevant UMLS cataract CUIs and then writing them along with other patient 

and event identifying data to a file that was used in the phenotyping process. 

For subjects with no cataract subtype coded or detected through NLP processing, 

ophthalmology image documents were processed using an OCR pipeline developed by the study 






























































































































































