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ABSTRACT

Each year the National Institute of Health spends over 12 billion dollars on patient related
medical research. Accurately classifying patients into categories representing disease,
exposures, or other medical conditions important to a study isatfithen conducting patient
related research. Without rigorous characterization of patients, also referred to as phenotyping,
relationships between exposures and outcomes could not be assessed, thus leading to non
reproducible study results. Developingl®to extract information from the electronic health
record (EHR) and methods that can augment a
improve the accuracy of a phenotyping model is the focus of this research. This thesis
demonstrates that empiag stateof-the-art computational methods makes it possible to
accurately phenotype patients based entirely on data found within an EHR, even though the EHR
data is not entered for that purpose. Three studies using the Marshfield Clinic EHR are
describd herein to support this research.

The first study used a mutnodal phenotyping approach to identify cataract patients for
a genomewide association study. Structured query data mining, natural language processing
and optical character recognition wlersed to extract cataract attributes from the data
warehouse, clinical narratives and image documents. Using these methods increased the yield of
cataract attribute informationfdld while maintaining a high degree of accuracy.

The second study demoraes the use of relational machine learning as a computational
approach for identifying unanticipated adverse drug reactions (ADEs). Matching and filtering
methods adopted were applied to training examples to enhance relational learning for ADE
detection.

The final study examined relational machine learning as a possible alternative fdyaSEidR
phenotyping. Several innovations including identification of positive examples usinr§ ICD
codes and infusing negative examples with borderline positive examglesemployed to

minimize reference expert effort, time and even to some extent possible bias. The study found
that relational learning performed significantly better than two popular decision tree learning
algorithms for phenotyping when evaluating aneder the receiver operator characteristic

curve.

Findings from this research support my thesis that stisiesvative use of computational
methods malsdt possible to more accurately charadt®r research subjects basedEiHR data.
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CHAPTER 1

1.1 INTRODUCTION

The National Institute of Health (NIH) spends billions of dollars each year on medical
research activities. In 2012 alone, approximately $1H4iébidollars was spent funding various
types of disease and medical condition related resédiEhRCDC Funding2013) Almost
half of the competitive medical research funded by the NIH involves human subjects, or patients
(Zinner et al., 2009). Accurdieclassifying patients into categories representing disease,
exposures, or other medical conditions important to a study is critical when conducting patient
related research. Without this rigorous classification, also referred to as phenotyping,
relatiorships between exposures and outcomes cannot be accurately quantified, thus causing
varying and nofreproducible results in some clinical and genetic studies (Bickeboller et al,

2003; Schulze et al, 2004; Gurwitz et al, 2010; Samuels et al, 2009; Wojceiyakk2008).

Due to the availability of electronic patient information, the Electronic Health Record
(EHR)0 also called the Electronic Medical RecoEMR)--is increasingly being used to identify
and characterize patients for medical research. The ERfins highly relational and inter
dependent biological, anatomical, physiological and behavioral observations and facts that
represent a pat ideventpldesotypny,e iprocesg whereby fakieRts are
electronically categorized using EHR ddtas become a popular and eeffective strategy for
identifying large numbers of research subjects (Kho et al, 2011; McCarty et al, 2011).

The EHRdriven phenotyping process is largely dependent on multiple iterations of
selecting patients and then malhyigeviewing them to identify classification criteria that can be
programmed to select patients from the EHR. The process relies on the perceptions and
knowledgeofamukdi sci pl i nary team to uncover fAhidden:
foundwithin the EHR data. As clinical experts (physicians) contribute to this gfiest
describe attributes that are easy to see within their practice. They may miss attributes that they
do not typically use when examining a patient but that are inforeatithe context of the EHR.
Simply asking physicians what they want to search for is not optimal because, while they may
Aknow it when they see it,o0 they may not be a
EHR that will best correlate wita given disease. In addition, the probabilistic structures of
EHR data are such that not all attributes that are observed are necessarily routinely recorded.
Likewise, there may be other attributes that are recorded to substantiate billingaartrule
reasons that should not be considered necessarily true; for example, a diagnosis code of 410
(acute myocardial infarctioninay be entered to justify billing for a troponin lab test to rule out
myocardial infarction (MI), rather than being entered to caieglly assert that the patient had



2

an MI. Those sorts of correlations may not be visible to the physician and may lead to additional
iterations of phenotype definition development. The result is a serious bottleneck in the
construction of high qualitylenotyping models.

The National Human Genome Research Institute has invested approxin3&ely $
million in the electronic Medical Records in Genomics (eMERGE) network to determine if
EHRs can successfully be used to identify clinical populations for gemoteeassociation
study researcfeMERGE Funding, 2011)One goal of that research network is to develop high
throughput phenotyping methods that can be shared across institutions. High throughput
phenotyping implies accelerating and expanding the rupteenotyping process. Developing
tools to extract information from the EHR and
reasoning capabilities to improve the accuracy of a phenotyping model or improve the efficiency
of the phenotyping processtige focus of this research.

Becaus€&HR-based phenotyping is important (Manolio et al, 2009; Ellsworth et al,
1999; Bickerboller et aR003; Schulze et al, 2004) and because phenotyping is hard and time
consuming (Kullo et al, 2010; Wojczynski et al030), conducting research on methods that
improve the phenotyping process is critical to the advancement of medical research and the
science surroundingHR-driven phenotyping.

1.2 THESIS STATEMENT

Contemporary EHRIriven phenotyping methods have progeiccessful in producing
high quality phenotypes. Nevertheless, phenotyping efforts | have been involved with or that
have documented time anesourcesave typically run from six months to over a year and
required numerous meetings and substantial tomemitments from multiple clinicians,
informaticists, programmers, and project coordinattMsch of that time is spent identifying
attributes that accurately characterize the phenotypehesis is:

Innovative use of computational methods makes it gibte to moreaccurately

characterize research subjects based on EHR data.

1.3 CONTRIBUTIONS

With the increasing pressure to accelerate research and make it more efficient, there is a
unique opportunity to advance the science surrourtghiig-based phenoping and expand
machine learning applications. This research contributes to both of these bodies of knowledge.
Electronic health record phenotyping and the application of computational methods based
on machine learning approaches are general themes timotahe studies represented in this
dissertation. Chapters3outline the ways in which this dissertation contributes to the fields of
EHR-driven phenotyping and machine learning. Specifically these contributions are: 1)
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demonstrating the use of a muhode approach (structured queries, natural language processing
and optical character recognition) to increase subject yield without compromising quality, for
cataract and cataract subtype phenotyping; 2) using relational learning, particularly inductive
logic programming (ILP), to identify adverse drug events in patienrgsoips, given the use of
coxZinhibitor medications; and 3) adapting ILP to the phenotyping task in a large relational
database, by using unigue cost functions and data censoringjtez$] generating training sets
without expert (physician) assistance for supervised machine learning; and infusing negative
examples with borderline positive examples to improve ILP model performance.

1.4 DOCUMENT OVERVIEW

The chapters of this documeare organized as follows:

Chapter 2 is intended to provide basic background information that will be used to help
the reader understand materials that are presented in ChapteFe&re are three main topics
that are presented: 1) the electronic linedtord; 2) phenotyping; and 3) machine learning. The
chapter is designed to provide an overview of these topics and present popular methods or
approaches used for phenotyping.

Chapter 3 introduces an approach that uses multiple computational methatieto
information for phenotyping. The methods include structured queries that are used on coded
EHR data; natural language processing which is used to extract concepts from textual
documents; and optical character recognition, used for identifyingordair characters on
image documents; the latter two methods are based on machine learning as the underlying
analytics to mine information. The chapter emphasizes the importance of using multiple
methods to increase subject yield while still maintairdngdequate level of accuracy when
phenotyping.

Chapter 4 introduces the relational machine learning approach and the novel methods of
censoring by matching, temporal difference, and iterative interaction between a human and
computer when developing modelgsing medications (Cox2 inhibitors), | demonstrate the use
of my methods to predict adverse drug evéAISE). An ADE is defined as a healtielated
problem or injury resulting from takingreormal dose ofmedication. ThisinnovativeADE
detectiomapproachwas then modified and appli¢ol phenotyping in Chapter 5.

Chapter 5 introduces methods thaeinduction logic programming for the phenotyping
task. It also presents an approach that minimizes physician involvement in the selection of
training sets for the supervised learning activity.

Chapter 6 summarizes the contributions of this research and presents future areas of
research.



CHAPTER 2

Background

This dissertation draws on two areas of resedtetR-driven phenotyping and
computational methodsuch as machine learning. This chapter provides information on both
subjects in addition to a detailed description of the electronic health red¢dR).(E

2.1  ELECTRONIC HEALTH RECORDS
TheEHR r epresents a record of ne apgeneratecht 6 s
through oRngoing interactions with a health care system. Data from iR & usually
transferred to a data warehouse and stored in relational schemas (figiaret®.1). There are
many challenges when using this data.

Figure 2.1. Electronic Medical Record Example

PatientID | Gender | Birthdate PatientID | Date | Physician | Symptoms | Diagnosis

P1 M 3/22/63 P1 1/1/01 Smith  palpitations hypoglycemic
P1 2/1/01 Jones  fever, aches influenza

PatientID | Date | LabTest | Result PatientID | Date |Observation| Result
P1 1/1/01  blood glucose 4 P1 1/1/01  Height 511
P1 1/9/01  blood glucose 45 P2 1/9/01 BMI 34.5

Date
Patient ID [Prescribed| Date Filled Physician | Medication | Dose Duration
P1 5/17/98 5/18/98 Jones Prilosec 10mg 3 months

1. Data are storeih multiple tables, rather than in one table with one record per patient,

he

thus making it more complex to |ink a pat.i
2. There is wusually missing and/ or incompl ete

history.

3. Patients may havensubstantiated presumptive diagnoses in their medical record. For
example, in some cases an KORliagnosis code is linked to an explanation that
laboratory tests are being done in order to confirm or eliminate the coded diagnosis,
rather than to defindat a patient has the diagnosis.

4. Information found within the HR is not always stored in a readily computable format
(scannedmages of hand written notes or test results, electronic text documents, etc.).

5. There is a lack of standardizedtriesin theEHR.



5

6. Clinical applications that support single data entry with minimal error checking result in
erroneous data.

7. Clinical problems drive the HR documentation practices, meaning there is poor
negation of a disease or conditions when compared to redhig.point is critical when
defining the control popul ation because th
absence0l.Sagen,

8. There are methodological issues to address when using longitudinal data, e.g. multiple
records for a given conditiomd multiple measuremeritsone must determine which
ones to use (Wojczynski et al, 2008; Elkin et al, 2010).

Although there are known limitations of usiB§iR data there are also benefits for
research. ThelHR captures a variety of longitudinal informatiabout a patient, ranging from
detailed measurements to impressions provided by clinical expeeEHR data is readily
available for research, thus reducing the cost and time required to gather the data (Elkin et al,
2010). Traditional research datarieval techniques usually capture data at defined point(s) in
time and are not reflective of routine patient care measuremémesddition, he EHR data
reflects ongoing interactions with the health system and also spans the continuum of health care
representing primary, secondary and tertiary care events. WWHRedata is often criticized for
inaccuracies, (Hripcsak et al, 2011; Botsis et al, 2010) the reality is that the data is used in
clinical care and it can be used for research (Herzig, 200ekiser, 1998; Peissig, 2012).
Consequently, any genetic or clinical discovery translation into clinical practice must leverage
the EHR data.

2.1.1 Data classes available within thEHR

TheEHR retrieves and stores a variety of patient related datané&ominiation from a
Clinical Data Repository (CDR). The CDR is optimized for patient care data delivery and data is
returned usually in milliseconds, to clinical staff caring for the patient. There are three primary
types of data found within the CDR.

e Structured or coded dataDemographic data such as name, address, gender, date of birth

and death are usually stored as structured data-9CDI diagnostic and procedure

codes and Current Procedural Terminology (CPT) procedure codes are administrative

types of data that are used for billing purposes. Laboratory results, clinical observations

(such as height, weight, biometric data), and medication inventories and prescriptions are

also structured types of data that are often stored with code, name, tasamnpl

version attributes in a relational database (Denny, 2082yctured data within the EHR

is limited due to the effort required to captureStructured or coded data is almost

always used to some degree, in the phenotyping effort.




e Narrative @cumentatiori Narrative and senstructured textual documents store
transcribed notes, summaries of care such as hospital discharge summaries, clinical visit
and telephone notes, interpretations from radiology exams and interpretations, laboratory
interpretations and test results such as echocardiograms, angioplasty and surgeries, to
name a few. There is a wealth of information embedded within clinical narratives and
use within theEHR usually requires reading a document to gain information about a
patiert. Xuet al (Xuet al 2011) showethe use otlinical narratives identified
colorectal cancer cases more reliably than c&t¢R data such as ICD and CPT
codes(Clinical narratives are increasingly being used in the phenotyping effort. The
volume ofdocuments available in the EHR varies based on the length of time the EHR
has been used for clinical care. These narratives

e Images and digital filmg Clinical images including radiology, digital procedures such as
an angioplasty procedure, genetic DN#ans, ophthalmology drawings are just a few
examples of clinical images. Hamdtitten documents are often scanned as images into
theEHR. Information retrieval from these types of media is usually manual and requires
reading or viewing and then interpragiby the reviewerThis media is rarely used when
phenotyping because of the expense involvedaining software to retrieve the data
even though there is usually more image documents than clinical narratives and
structured data combined.

2.2 PHENOTYPING

Careful phenotyping is both critical to the eventual results discovered by a study
(Bickeboller et al, 2003) and a source of great challenge due to the variety of phenotyping
approaches that can be employed with the same data (Schulze et al, 2#)u§ldre taken at
multiple levels with rigorous attention to data quality, completeness, comparability and
recognition and reduction of clinical heterogeneity (Schulze et al, 2004; Wojczynski et al, 2008).
This can be demonstrated by using a charactegatih as blood pressure. A simple approach
distinguishes people who have had an elevated blood préssee on onmeasuremerfbund
in a database containing blood pressure measurefnemtshose who have not. However, a
more useful approachwouldbeo det er mi ne t he extent to which
(or diastolic) blood pressure over time is above or below their own expected average, given their
age and body mass index at the time of each measurement. In order to generate a particular
blood pressure phenotype, data on systolic and diastolic values, date of each measurement, date
of birth (or age at measurement), weight and height at time of each measurement, plus data on
the nature of the blood pressure reading, if available (sigtagding, supine; on treatment or
not) are needed. The phenotype would then be based on the residuals from a regression model
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that attempts to predict mean blood pressure with mean age and mean body mass index. This
method employs the available longitndi data that can be found in tBeIR and also adjusts for

other contributors to blood pressure staush as blood pressure medicatidrhese issues are
particularly challenging to address when using data found withiEktie Phenotypes are
sometimedglifficult to define because the disease or clinical manifestation may have an
ambiguous or imprecise definition or be inadequately measured; the phenotype may encompass
several underlying conditions where each have their own influences from genetics and th
environment; or there may lomknownenvironmental or genetic influences (Wojczynski et al,
2008).

2.2.1 EHR Phenotyping Process

Defining a phenotype model representing a true disease state as well as intermediate
phenotypes based on biological markarslinical test results requires a clear understanding of
methods to reduce clinical heterogeneity and/or deal with data quality i$seesurrent state of
EHR-based phenotyping is maturing, but often a sexanual process is used to derive valid
phenoypes (sedigure2.2). A multi- disciplinary team identifies and then translates features
representing subjects with the desired phenotype into a programmable data definition used to
select patients from a data repository. In some instances, statistidaling is done to reduce
heterogeneity (Waudby et al, 2011). The data is analyzed and adjustments made to the model
prior to pulling a sample of subjects to validate. Iterations of code revisions, re@tiagtion
and clinician review (validation)
are usually required to increase the Figure 2.2: Phenotyping Process
accuracy of the model.

Multi-diciplinary

2.2.2 Multi -disciplinary
Phenotyping Teams i
Given the complex nature o |‘—|,-,, ;
phenotyping, having involvement & -~
from individuals spanning a variety

ﬁaz,”“*'ru - Data

Warehouse

of disciplines (medicine, Validated

. . . .. L FE) Phenotype
epidemiology, biostatistics, .a,%
informatics, programming, medical “-:b‘:g%q E e vy

. y \ = )

record abs_tractlon and research) is “‘H% R .
extremely important. There are 80+ Years of " subject® - Modeling
several advantages of phenotypin¢ ~ Clinical Notes 1§ =

using a multidisciplinary team: 1)
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team members can offer a wide range of expertise from their respective disciplihey; &fer
different perspectives when dealing with problems; and 3) teams members can usually work on
tasks in parallel thus speeding the needed work.

Team members because of their cognitive ability, respective discipline and experiences
bring differentskills, knowledge and perspectives to the process, which can affect phenotyping
outcomes if not managed effectively. A study by Barathl, evaluated team member ability
and personalityto seehow those attributes affect team effectiveness (Barriek 4998). Their
study showed that general mental ability, conscientiousness, agreeableness, extraversion and
emotional stability supported team performance activities. This work somewhat corroborates a
study by Woolleyet al that looked at team comptisn and analytic effectiveness (Woolley et
al, 2008). The authors noted that bringing members with strongedkeskant abilities together
with experts (those who possess a higher level of knowledge or skill than the average person)
yields a greater potdial to influence analytic performance. Nevertheless, building such a team
can also present several challenges such as: 1) team member status dynamics may cause lower
status team members to give more credence to experts than they deserve, or expetbdenay
inclined to take seriously the views of other team members; and 2) the abilities and skills of
others may not be well known to all members and thus not utilized. The authors recommend
conducting collaborative planning activities to define how membrgage in explicit
discussions, work assignment and how contributions will be used. The study demonstrated that
team abilities and composition planning more positively impacts analytic team performance than
team composition or collaborative planningredo

This research is relevant to the phenotyping process and team makeup because
phenotyping is an analytic exercise at many levels. One person usually does not have the skills
or knowledge to conduct all of the tasks required in the process. Briegimgmembers with
different skills and cognitive abilities together to conduct phenotyping requires organization,
planning and mutual respect of team member contributions. Recognizing the team dynamics,

member abilities and prowdmg a Figure 2.3: Ins and Outs of EHR Phenotyping

framework for workcan improve Obtained from eMRGE NetworkeMERGE, 2012)
the phenOtyplng proceSS' Definitely Negative Enlgzth Positive Easy
Absent On Inference Datga On Inference Positive
2.2.3 EHR Phenotyping | | \ /
Challenges Condition | | \ /
2.2.3.1Phenotyping Tradeoffs ‘ \ l

It is clear from the extent ‘
of articles published and creative ~ Exclusions | | .
! !

Definite Exclusion Not No Exclusion Exclusion
Exclusi Inferred Enough Inferred Absence
xeusion nierre Data merre Asserted
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activity surrounding the topic &HR-based phenotyping for genetic studies (Kho et d;120
Wojczynski et al, 2008) that there is not, and probably cannot be, just one correct approach to
phenotyping. A major challenge in the phenotyping process is to address tradeoff decisions
between participant eligibility and phenotype homogeneity. Herowords, the phenotype
definitions that will succinctly characterize a subject and reduce heterogeneity will often require
inclusion of more phenotypic factors with greater specificity in their definition, thereby reducing
the total number of participantith the necessary data to be considered eligible for accurate
phenotyping. The desired phenotype may require such specific data that many participants will
be ineligible for a study. In order to phenotype a greater portion of participants, somgomelaxa
of eligibility rules and data comparability may be required. Figudlustrates this concept.

As with the phenotype conditions, there are varying degrees of exclusions, and evaluation is
needed to determine the tradeoffs.

The tradeoff concept oabest be demonstrated using a cataract phenotyping example.
Table2l provides a Asimplifiedd vEHRGMvenn of catar
phenotyping. Let 6s say t-widetassscatioestudyeandi s condu
requires 1000 pati¢m with a cataract (or who previously had a cataract) and 1000 patients who
did not develop the condition. Prior to selecting patients for each group, an acceptable inclusion
accuracy threshold (for selecting patients based on criteria or combinatwiterid) will be
determined. Initially all criteria listed itable2.1 could be used to identify probable cataract
patients. One could speculate that a high percentage of patients identified using all of the criteria
would actually have cataracts (demat a s fi e as figurpa3s i This soeldsbe verifind
by reviewing the surgical and ophthalmology notes for the patients. What if only 800 patients
were identified using all of the criteria? We still need 200 more patients for the studgexthe
step will be to relax the phenotyping criteria and use a subset of the criteria to see if there are
patients (not originally selected) who have a cataract surgical code and not a cataract diagnosis
code. If patients are identified, a similar verifioa of patient cataract status would ensue.

Using surgical procedure codes for cataract patient detection is highly predictive of cataracts
because a physician would bill for the cataract removal and would not want to miss a revenue
generating opportunyt It is more difficult to identify cataract patients if the removal was done
outside of the health care system because there would be no record of the event and no incentive
to record this information. Thus far this example illustrates a-wéden thecondition

continuum by relaxing specific eligibility criter{@hich may add bias to the studig,gain more
subjects for a study.

To continue this example, we next use the diagnostic code (without a CPT procedure
code) to identify cataract patients. Bafore we select a group of patients not previously
classified using diagnosis codes and verify a sample to estimate the percentage of patients who
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actually meet the criteria. If the true positive rate meets the accuracy threshold, we will add
these sulgcts to the cataract group. Note that subjectbe@remingmore like the controls
because we are relaxing our criteria and identifying patients using different criteria (and also
moving into the green/grey area on the continuum).

Table 2.1: Cataract phenotype algorithm description This is a simplified version of a model used to identify
patients with cataracts.

Criteria  Describing Criteria Description
1 Condition Must have 1 Cataract removal Select the following CPT code%6982',
surgery cde '66983', '66984', '66985', '66986','66830',
'66840', '66850', '66852', '66920', '66930',
'66940'".
Exclusion Exclude traumatic, congenital and
juvenile cataract surgery codes.
Condition Must be age 50 or oldet the time
of surgery
2 Condition Must have 2+ cataract IGD Senile Cataract 366.10366.8
diagnosis codes Unspecified Cataract 366.9
Exclusion Do not include any of these IC®  Congenital Cataract 743.384
diagnosis codes Traumatic Cataract 3680
Juvenile Cataract 366.0Q01
Condition Must be age 50 or older at the time
of surgery
Control  Condition Absence of cataract procedure coc See codes above
criteria Absence of ICE9 Codes See codes above
Optical exam in last 2 years

Idenifying patients without a cataract is more difficult. One could logically assume that
subjects without a surgical procedure or cataract diagnosis codes should be classified as controls.
As previously noted data found within tB&IR has limitations and nat be evaluated prior to
accepting it as ground truth. The control classification is dependent on several factors: 1) the
longitudinal history of data found within tleHR or the length of time the patient has been cared
for in the health system; 2) corfiatory tests; and/or 3) the workflow surrounding clinical data
collection. For example, a patient who had a routine optical exams and no indication of cataract

di agnoses or procedures would | ikely bre class

red on the condition continuum figure2.3. Another situation may involve a patient new to the
health system who had a cataract previously removed. The patient will most likely not have
documented cataract procedures and/or diagnoses becausesthey &@o the system. The

medi cal evaluation at the patientés initial
be recorded. In thiastsituation, a negation of cataract cannot be made without an eye exam, so

Vv
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we would place the patientinkie r t he ANegative on inferenceo
classificationso on the continuum.

2.2.3.2Feature Identification

In medicine, there is a distinction between anecdotal reports, synd{®ymesome,
2010) and disease. Anecdotal reports are gezedhktatements about something that is
suspected for which no real evidence exists (anecdotal evidence). A syndrome implies the co
occurrence of several recognizable attributes (signs, symptoms or characteristics) that alert the
clinician to the presena# other attributes (syndrome). A disease implies that we understand
something about the causal process and the symptoms that occur. Often when a syndrome is first
described, critical attributes are left out. Physicians describe attributes thatyatie sseswithin
their practice. As indicated previously, it is relatively easy for a physician to identify several
clinical attributes that classify small numbers of patients as definitely having (or not having) a
disease or phenotype. It is more difficidtidentify hidden attributes (attributes that are
correlated with the initial attribute). This difficulty can lead to additional iterations when
developing the phenotype model.

2.2.4 Phenotyping Tools and Technologies

Given the aforementioned challenge&€HR-driven phenotyping, the utility of using the
EHR for phenotyping has been demonstrated in l@agde genomic studies (Ritchie et al, 2010;
Peissig et al, 2012; Pakhomov & Weston, 2007; Kho et al, 2011). A variety of tools and
technologies have ba developed to support using tiER for research and phenotyping
activities. Following is a description of the major technologies that have become popular in the
past two decades.

2.2.4.1Data Warehouse

A well-accepted axiom in informatics is thatatdifficult, if not impossible, for a single
database to perform optimally for both single patient queries (retrieving all the data for one
patient) and crospatient queries (such as finding all patients with a diabetes diagnosis that have
had an elevatedgbAlc lab result within the past year). A clinical data repository supporting an
EHRis optimized for single patient queries andadawarehousés optimized for cross patient
gueries. Thelata warehousie an extension of thEHR that combines datadm theclinical
data repositorand other disparate clinical databases into an integrated repository that is
maximized for populatiofbased queries. Data stored within dag¢a warehousie usually
structured (or coded), standardized, time variant datloeal in structure. The efficiency of
phenotypic queries is generally increased by the availabilitydataawarehouse
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2.2.4.2Structured Queries and Data Manipulation

Notably the most popular approach to phenotyping, structured queries take gelvdnta
structured data found within the DW. Structured queries use Boolean logic and programmable
rules to identify patients with a given phenotype. The basic Boolean logic can be embedded into
computer programs using a variety of programming languageslitbw interaction against
tables in the DW. Structured queries require less time and effort (in most situations), and are
dependent on available coded data to classify patients. Advanced analytic and data management
approaches filter, transform andaghically present data in ways that allow humans to determine
phenotyping parameters. A drawback of this approach is the person writing the structured queries
has to write the code to pull the information and thus must know the criteria and structbees of t
database. Many of tHeHR-driven phenotyping efforts take advantage of these techniques as a
way to characterize patients.

2.2.4.3Natural Language Processing

Clinical documents found within @HR are valuable sources of information for phenotyping
(Goryacheet al, 2006). In order to use information embedded in the textual documents, Natural
Language Processing (NLP) is used to transform unstructured text data from the documents into
a structured format that can be used for phenotyping. SevePRabplhroaches and systems

have been developed to extract concepts, measurements or clinical information on a variety of
diseases and conditions. Some of the more popular NLP systems are:

e Medical Language Extraction and Encoding (MedLEE)ystem that weadeveloped at
Columbia University by Friedman et al. (Friednetral 1994, 1995), uses syntactic and
semantic parsing of data. This linguistic rule based system was originally designed for
radiology reports (Mendonca et al, 2005; Friedman et al, 19%%)nd has since been
expanded to other clinical domains (Friednetal 2004; Meltorand Hripcsak2005;

Peissiget al 2012).

e MetaMap- is a freely distributed NLP system that was originally designed to extract
information from medical literaturelt was developed by Aronson et al. at the National
Library of Medicine and maps to concepts found in the Unified Medical Language
System Metathesarus (Aronson, 2001; Lindb&e93.

e Knowledge Map Concept Identifier (KMCl)a proprietary general purpoBiP system
developed by Vanderbilt University (Denny, 2003, 2005, 2009). It supports concept
identification and negation and is used for a variety of phenotyping initiatives to support
genomewide association studies.
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e clinical Text Analyss and Knowledgé&xtraction System (CTAKES) Savova et al. from

Mayo Clinic developed cTAKES. cTAKES is an open source NLP system and consists

of several modules placed into a pipeline architecture (Savova eflg), 20

Already there is a large body of research sunmding NLP and the ability to extract
clinical concepts and data from tebased clinical notes (Friedman et al, 2004, Denny et al,
2003, 2004, 2009; Peissig et al, 2007; Mendonca et al, 2005). NLP has contributed significantly
to both the accuracy andiefency of developingeHR-based phenotyping algorithms
(Pakhomov et al, 2007; Li et al, 2008; Peissig et al, 2012).

Several studies have compared the accuracy of phenotypes developed using
administrative coded data to phenotypes derived using NLP neetiitakhomoet al found
NLP to be superior over diagnostic coding to detect patients with angina pectoris (chest pain)
(Pakhomov et al, 2007). ket al. compared NLP to ICB coding for extracting screening
information from discharge summaries (Li et2008). Several advantages were noted when
using NLP, but the authors indicated that more study was needed.eEdkinsed Mayo
Clinicbs Vocabul ar y-RTRImgnasesrfront chnical docdumensS ah@ tdind
the Vocabulary Parser to be sigoéntly better than ICE coding when evaluating 10
diagnostic conditions (Elkin et al, 2001). A study by Satial demonstrated that combining
EHR coded data with a natural language processing approach boosts model accuracy
significantly over the langage approach alone, when identifying complications chpaiture
infants (Saria et al, 2010). Although these studies have indicated the superiority of NLP over
structured query approaches one must evaluate the phenotyelBrid determine the best
appoach for phenotyping. The approach may vary depending on phenotygéiRnd

2.2.4.40ptical Character Recognition

The use of optical character recognition (OCR) technology provides the ability to extract
clinical information from image documents. Oftegures or documents are scanned into the
EHR that contain clinically relevant information for research. OCR technology is used to
interpret characters and/or symbols found within the document. The software is trained to
recognize characters or symbofglahen translates the characters/symbols into usable data. Kim
and Yu developed an OCR tool to extract data from biomedical literature figures (Kim, 2011).
Rasmussen et al. applied OCR to identify cataract subtypes phenotypes in patients for genome
wide association study phenotyping (Rasmussen, 2011, Peissig, 2012).

2.3 MACHINE LEARNING

Machine learning (ML) is a computational discipline aimed at creating algorithms that
allow computers to use large amounts of data to build predictive models or tnizecogmplex
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patterns or characteristics within data. The advantage of using ML approaches is that computers
dondédt have to be programmed with the explicit
informative patterns by examining the data.

Superviseddarning is one type of machine learning that learns patterns (or hypotheses)
between inputs and outputs to predict future outcomes or v&etsqr and Taska07). The
supervision comes from a training set of examples that are labeled with an attribtgeest
that we would like to predict from the other attributes. This attribute is typically called the
response variable or response; if it is nominal, it may also be called the class. A hypothesis, or
predictive model, is constructed from a spacpretflictors. Over time, many different
supervised learning approaches have been developed and applied to the health care domain. The
NLP and OCR phenotyping methods previously reported rely on supervised learning methods.
Mitchell provides a general omgew of approaches used for machine learning (Mitchell, 1997).
These methods are based on the inductive learning hypothesis which states that any hypothesis
found to accurately label a large set of observed training examples is also likely to provide
accuate labeling when applied to unobserved data. In the following section | provide an
overview of thanachine learningnethods relevant to this research.

2.3.1 Decision Trees

Decision tree learning is similar to a series g@¢hénelse statements or @ chart. The
learned model is represented by a decision(frgere 2.4) Each example is classified by
starting at the root node of the tree. Starting witl Figure 2.4: Decision Tree Example
the top node of the tree as the current node, the (Examplefrom Struyf et al, 2008)
attribute test at that node is applied te &xample
by comparing the test value in the node with the
attribute value in the example. One branch from
the current node is consistent with the attribute @ Alcohol use >5
value for the example, and we proceed down thz yes o
branch. The end of a branch is represented by «
leaf, which provides the predicted value for the
response variable.

Decision trees are used for classification u
prediction. They are easy to understand, implement and used to visually and explicitly represent
decisions. Decision trees can be divided imto main types: 1) a classification tree when the
result of the learning activity results in a prediction of a classification (i.e. predicting if a patient
will have a heart attack); and 2) a regression tree which results in a prediction of some type of
value (i.e. predicting the amount or level of coumadin needed to thin ones blood after a hip

Druguse >3

ves no
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replacement surgery to prevent blood clots). Construction of a decision tree from data, or
training of a decision tree, proceeds by recursively partitioningateelthsed on some scoring
function for the purity of a node, suchiaformation gain or Gini gain. The next section
discusses this process in greater detail for the specific algorithm ID3, which uses information
gain. Gini gain will be described latertims chapter with Classification and Regression Trees.

2.31.1 Interactive Dichotomizer 3

A popular decision tree algorithm is Interactive Dichotomizer 3 (ID3) (Quinlan, 1986)
and successors C4.5 and C5.0. These algorithms emploptapclassificatiorwhere an
instance is classified by starting at the root node of the tree. Each attribute is tested and then
continues down the branch if the value corresponds to a node value. The process is repeated for
the subtree rooted at the new node. A greedyde#s used to search the space of possible
decision trees meaning that the algorithm does not backtrack to consider earlier choices once a
candidate attribute is chosen. ID3 uses an information gain measure to select from candidate
attributes at each steyhile growing the tree. Information gain is a measure of difference
between two probability distributions. Simply put, information gain is the expected reduction in
entropy caused by knowing the value of the attribute. Information gain is calculatgdhesi
following formula:

IG XY) = HX)-HXI|Y)

where: IG denotes information gain

H denotes information entropy (definition follows)
Y denotes an attribute, or variable
X denotes the class (response) variable

Information gain is based on infortian theory concept of entropy (Shannon, 1948),
which measures the uncertainty in a random variable (Mitchell, 1997). For example, suppose
there is a variable that has three values: A, B, arlfit@e collection of values for the variable
occurs randomlyseefigure2.5.A), the variablas said to have high entropy and each value has
an equal chance of being selected or used. If on the other hand, the collection of values are
nonrrandomly distributed (sdégure2.5.B), the variable is said to have l@ntropy. In this
situation, value B occurs more frequently than A or C.

In figure2.5.A above, the entropy is closer to 1 (because of randomness) and the values
sampled from it would be roughly evenly distributed. Fidgu#eB, entropy is closer to (hd the
values sampled would be more predictable with the selection of B often (Moore, 2003). Entropy
is calculated using the following formula:

H(X) =(pllog2 pl) (p2log2p2fé pm | o0g2 pm

= 7L pjlog2p;
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where H(X) is the entropy of X; and p is the probability; (Moore, 2003)

Figure 2.5: High and Low Entropy
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An advantage of ID3, and decision trees in general, igliegitan learn notinear
classifiers. Another is that its greedy search makes it compubyiefficient. A limitation of
ID3 is it does not perform backtracking in its search. Once it selects an attribute to test, it does
not reconsider its choice and thus could converge to a locally optimal solution that may not be
globally optimal. A relted limitation is that ID3 only maintains a single current hypothesis. By
doing so it loses the capability to explicitly represent all consistent hypotheses. ID3 also
operates using selection bias for trees that place attributes with highest inforgaaiicfosest
to the root, which in turn favors shorter trees over longer ones. When using ID3 and other
decision tree algorithms, caution should be taken to avoidfitineg of the tree to the training
data. Pruning the tree may be needed to make #igwimore generalizable.

2.31.2C4.5
One of the bestnown and most widely used learning algorithms is C4.5, which is an
i mproved version of Quinlanés |1 D3 algorithm.

large numbers of divisions, whidbads to over fitting. The C4.5 algorithm is designed to
overcome the disadvantages of information gain and is sensitive to how broadly and uniformly
the attribute splits the data (Quinjar®93. The C4.5 algorithm handles continuous data and can
dealsensibly with missing values by treating it as a separate value. It also has capabilities to
prune a tree when using noisy data. It also has the capability to develop rules by greedily
pruning conditions from each rule if it reduces the estimator efribie training data. A
disadvantage of using C4.5 is that it is computationally slow when using large and noisy
datasets. A commercial version C.50 usssralartechnique but is much faster.
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2.31.3 Classificationand Regression Trees

ClassificationAnd Regression Tree (CART) rublmsed classifier is a ngrarametric
decision tree learning technique that is used to create decision lists (sets of rules) (Breiman,
1984). CART builds classification or regression trees for numeric attributes (regression)
categorical attributes (classification). The algorithm will identify the most significant variables
by forming a partial deci sion tree and turns
each node, the available attributes are evaluatededettis of separating the classes of training
examples. The tree building process entails finding the best initial spit at the root node. A
popular splitting function used by CART is the Gini index, which is described in the next
paragraph. For each subde, we find the best split for the data subset at the node and continue
this until no more splits are found. We then prune the nodes to maximize generalizability.

The CART algorithm uses the Gini index (also referred to as Gini coefficient or Gini
impurity), to determine how to evaluate splits. The Gini index is a measure how often a
randomly selected element from a set would be incorrectly labeledeféiabeled using the
distribution of labels in the subset. A best split is the one that maxdnfizepurity (a single class
is primarily represented) for an attribute. The Gini index (Breiman et al, 1948) is calculated as
follows:

gini C =1- T p;

where pj is the relative frequency in class C.

In figure 6, we see that theat node (represented by a variable with 2 classes of data),
has a Gini index of 0.5. Using the equation above, we would calculate the index in the following

6 green 2 6 blue

—— 4
12 12

C2 with a size of N1 and N2, the Gini index for the split is calculated using the this equation:

2
way: 1 —( ) = 0.5. Once the splitting of C occurgd two subsets C1 and

L N1 | N2
gini split C = N gini C1 + N gini (C2)
This equation considers the number of elements in th@sdiband weights the Gini

index calculated for each sumode by the subode weight (the total elements for the sddle /
total number of elements represented by altrsotbeg. The result is an index that can be used

Figure 2.6: Gini Splitting at Root and Sub-nodes

Root node = 1- (0.5 + 0.5%) =0.5

Gini split:

Attribute A = ((2/7)? + (5/7)3)(7/12)
=0.34

Attribute B =((4/5)%+ (1/5)? ) (5/12))

=0.28
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to select the split. Figur26 illustrates the calculation of the Gini index for the root node and
Gini split. In this example attribute B (smallest Gini split (C)) is chosen to split the node
(Rokach and Maimon, 2010

2.32 Association Rule Learning

Association rule learning is basedthie premise that given a set of transactions, find the rules
that will predict the occurrence of an item based on the occurrence of other items in the
transaction. This approach is commonly used in Mabvksket transactions and implies co
occurrence natausality. The mining task goal is to list all possible association rules and then
compute the support and confidence for each rule and prune rules that fail to meet the minimum
support and confidence thresholds. This approach is computationally pveheénit thus the

number of candidates, transactions or comparisons must be l{inite¢Hsu and Ma, 1998)

2.33 Bayesian Networks

A Bayes network (BN) is a Figure 2.7: Example of Bayesian Network and Conditiona
graphical structure that allows us to easily Probability Tables
understand and reason about an uncertain FTA) 8
domain(Mitchell, 1997) The nodes of a 0.1(1,9) 0.2 (1,4)
Bayesian networkepresent random
variables (denoted ifigure2.7 as A, B, C, : CPT for nodes ACB
D, and E) and the lines between the nodes ' SR gg‘?; -
are directed arcs or links that represent T F 06(2)
dependencies between the variables. The: ® A e ﬁ:}

directed arcs degt the direction of the
relationship between a parent nodg (A)
and child noded.g.C). The strength of the
relationship between the nodes is
guantified using a conditional probability cTrio) TP (E)
table (CPT). The only constraint T [0.9(9,1) T [08(41)
surrounding the Byesian netwd is that F_102(14) F_01(29)
there CannOt be any directed CyCleS. |n Example from: © Jude Shavik, 2006 & David Page 2007
figure2.7 there is a directed cycle between nodes A, C and D (represented by the dashed line).
One cannot return to a node simply by following the directed arcs as shown with arc DA.
Another assumptiors based on the Markov property and implies that there are no direct
dependencies in the system being modeled that are not shown viaagesiaB networks

having this property are called independen@ps. In the example providedfigure 2.7, the
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jont distribution table for nodes A, C, and B i
table provides probabilities for C based on the combination of values that A and B contribute.
For example, the probability of C given A and B are both true is ®ew information is
obtained, we update the distribution based on relevant data points that correspond to the CPT
entry.

A Bayesian networkpecifies the full joint distribution over its random variables. The
nodes are represented usingoxxn ard the value in the joint distribution is represented by,P(x
X2, @), where P is the product of the joint distributions. The chain rule of the probability
theory (Russell and Norvig, 2003), allows us to show the basic equation as:

P xy,..x, =( [~y P(x;|Parents X; )

To create a Byesian networkwe first have to identify the random variables in the
network and capture the relationships between the nodes using arcs, as illusfrgted 2rv .
Each andom variable in the BN has values that are both mutually exclusive and exhaustive. The
variables can be Boolean nodes (true or false); ordered values (cold, warm, hot); or integral
values (weight =20kg2 0 0 k g ) . Usi ng a si mpdrkiCbnsteuctionver si on
Algorithm (Pearl, 1988), the following steps occur: 1) choose a set of relevant variables for {Xi}
where Xi represents a random variable or node that describe the domain; 2) order the variables
<X1, é Xn>; 3) St arandaddvariablesane a arti;me yntil thexet ave ma k
variables; For each variable Xi ; add the arcs to the Xi node from already existing nodes in the
network (Parents of Xi) and satisfy the conditional independence property; then define the CPT
for Xi. Theconditional independence property is:

P X; X/,..,X}n) = P(X; | Parents X; )

whereX; ... X;, are all variables that preced¥
For each node in the network we have to identify a complete setting for all variables. We also
assume thatthelaa s et we are using is a random sampl e
to model. If available, we can use a prior distribution and simply update the distribution based
on the relevant data points (that agree with the settings for the paremtsrthapond with the
CPT entry.) This is referred to as a Dirichlet distribution (Geiger and Heckman, 1995). Stated
simply a Dirichlet distribution is a distribution over a distribution.

One challenge when usingesian networks to represent hidden nables. These
variables may affect theagesian networkbut because they are hidden, cannot explicitly be
measured and thus not included in the network (P2@E. We may want to include a node in
the network to represent this phenomenon. Otheablas can be used to predict the hidden
variable and the hidden variable can also be used to predict other variables. Trying to estimate
CPTs for this is difficult because none of our data points have a value for this variable. The
general EM framework adesses this problem and is used to estimate CPTs for hidden variables
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(Page 2013. The first step in the EM framework is to calculate the expectation (E), over the
missing values for the given model. The second step is maximization (M), which reptaces th
current model with a Dirichlet distribution that maximizes the probability of the data.
There are situations where calculating missing or sparse information is resource intensive
and the number of structures created is exponential. Finding an ogtiiatdure is NP
complete, meaning there is no known efficient way to locate a solution. Two common options
are used in this situation: 1) severely restrict the possible structures and usedmresnted
Naive Bayes (Friedman, Geiger and Goldszmidt, %3®72) use a heuristic search (such as
sparse candidate) (Friedman, Nachman and Pebe

2.34 Relational Learning

Over the last decade, ILP and other methods for relational learning (Getoor and Taskar,
2007) have emerged within the ML domairatidress the complexities of muiélational data.
These relational learning methods have been used with EHR data in studies ranging from
screening for breast cancer (Burnside et al, 2009; Liu et al, 2012) to predicting adverse drug
events (Davis et al, 28; Weiss et al, 2012) or adverse clinical outcomes (Page et al, 2012; Berg
et al, 2010; Kawaler et al, 2012; Davis et al, 2012).

Unlike rule induction and other machine learning algorithms that assume each example is
a feature vector, or a record, ILP aighms work directly on data distributed over different
tables for diagnoses, labs, procedures, prescriptions, etc. ILP algorithms searchrémunsine
Datalog rules, equivalent to SQL queries or relational algebra expressions, that differentiates
postive examples (e.g., cases) from negative examples (e.g., control patients) given background
knowledge (e.g., EHR data). The algorithmic details of leading ILP systems have been
thoroughly described (Dzeroski and Lavrac, 2001; Inductive logic programnmngnutshell
ILP uses a covering algorithm adopted from rule induction algorithms to construct a set of rules,
known as fAclauseso. The covering algorithm st
hypothesis, and searches for a clause that maximigesre of positive vs. negative examples
explained by the clause, adds the clause to the hypothesis, and removes the positive examples
explained. These steps are repeated until all the positive examples have been explained.

Rules or clauses are constedtby starting from an unconditional rule, or empty clause,
and adding antecedents to the rule one by one. New antecedents are generated by enumerating
possible calls to the database. For example, ILP could enumerate the diagnosis codes reported in
the dahbase. Ideally, one would only look for clauses that explain positive examples and do not
explain, or cover, any negative examples. In practice, ILP must deal with inconsistent and
incomplete data hence it uses statistical criteria based on the numbsitiekpand negative
explained examples to quantify quality. Two simple criteria are to score clauses by the fraction
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of covered examples that are positive, which is precision, or by the number of positive examples
minus the number of negative examplesered by the clause.

2.34.1 Inductive Logic Programming Explanation

Inductive Logic Programming (ILP) addresses the problem of learning (or inducing) first
order predicate calculus (FOPC) rules from a set of examples andlzadatthat includes
multiple relations (or tables). Most work in ILP limits itself to amtursive Datalog
(Ramakrishnan, 2003), a subset of FOPC equivalent to relational algebra or relational calculus.
Consequently it builds upon the concept of aiTHEN rule. IFTHEN rules are oe of the most
popular representations in dataning and machine learning, and are of the form shown in this
example:

IF Sunny AND Vacation THEN PlayOutside

This rule states that if it is sunny and vacation time, it is time to play outside. Observe
that tie rule implicitly refers to an individual. Fir€irder rules use variables to make it explicit
the individuals, to which they refer to, making it possible to refer to different individuals. As an
exampl e, we use Mitchel |l ograndddMightec hel | , 1997)

IF Father(x,y) AND Mother(y,z) AND Female(z) THEN GrandDaugther(x,z)

X, Y, and z are variables that can be set (or bound) to any person, but only the values consistent
with the database will make the rule true. Notice that not only daeruth refer to multiple
individuals, but that it also refers to multiple tables in the database, or predicates: Father, Mother,
and Female. This ability to mention different individuals whose properties are spread over
different tables, added to the faleat rules have an intuitive translation to natural language,

makes Datalog rules a powerful and natural representation fornelakional learning.

A large number of different learning algorithms have been proposed for learning rules
within ILP (De Radt, 2008). All these algorithms are designed to search for good rules, and they
do so by constructing rules, evaluating the rules on the data, and selecting the rules that do well
according to pralefined criteria. The firstwidely s e d al g or B EQILQuinl@uandn | an 6
Cameronrjones, 199), executes by first generating all possible rules of size 1, then all rules of
size 2, and so on until either it finds good rules, or it reaches some threshold and stops.

The problem with FOIL is that in most domaithere are a large number of possible rules
one can construct. For example, in a typical EHR, we may find over 5,000 different diagnoses
codes, over 3,000 different medications, and thousands of different possible labs and procedures
(Muggleton, 1995). Res must refer to specific conditions, drugs, or labs and in this case,
applying the FOIL procedure would generate at least 10,000 different rules of size 1, over
10,0002 clauses of size 2, and so on. Unfortunately, evaluating these rules over thousands or
maybe millions of patients is not practical.
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I n this work | wuse Muggletonds Progol al go
i mpl emented in Srinivasandés Al eph system (Ash
applying the idea that if a rule isafal, it must explain (or cover) at least one example. Thus,
instead of blindly generating rules, Progol first looks in detail at one example, and it only
constructs rules that are guaranteed to cover that example. In other words, Progol still generates
rules in the same fashion as FOIL but it uses an example, called a seed, to guide rule
construction. The benefit is that instead of having to generate a rule for the thousands of
conditions, drugs and labs in the datse, we can generate rules for the masker number of
conditions that affect a patient.

2.34.2 Inductive Logic Programming Progol Algorithm

In more detail, the Progol Algorithm is as follows:

e Select an example not yet explained by any rule. In the EHR domain, an example is a
pat i encalbigoryc!| i ni

e Search the dathase for data directly related to the example. In the case of an EHR, this
means collecting all diagnoses, prescriptions, lab results, for the selected patient.

e Generate rules based on the patient, using the FOIL algoritrerulés will be
constructed from the events of the chosen
patients. This is achieved by replacing the references to the actual patient and temporal
information by variables. The procedure stops when it firgtsoa rule (according to the
criteria | discuss later).

Remove the examples explained by the new rule. If no more examples remain, learning is
complete. Otherwise, repeat the process on the remaining examples, starting from step 1.
ILP learning is thus soewhat different from learning with a propositional system or single
table, as most ML algorithms do. Instead of using a single table, the first step must be to define
which tables are of interest to the learning process. Notice that it is not necestaniefoto be
materialized; implicit tables or views may also be used (Davis et al, 2005).

The second step is to parameterize the search. In the case of phenotyping, accepted rules
should cover very few, ideally zero, negative examplext, rules that scceed on very few
examples tend tover fit. a useful heuristic is that a rule is only acceptable when it covers at
least 20 examples. Last, search time heavily depends on the maximum number of rules that are
considered for each seed.

The actual search @eess is automatic. The output is a set of rules (or theory). Each rule
will cover at least one example, and quite often more than one example. Notice that whether a
rule covers an example or not, the rule may be seen as a property, or attributer(tbatris t
false), of the example.
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If ILP learned rules can be seen as attribwtessan construct classifiers that combine
the output of the rules. Any classifier can be used. In this warkise the TAN Bayesian
networks, an extension of naive Bayed tigtter addresses correlated attributes, as we have had
previous good results in using TAN for related tasks and it produces probabilities for examples
being true (Davis et al, 2005).

2.34.3 Statistical Relational Learning

Statistical relational learngn(SRL) combines graphical model approaches (denoting
explicit models of uncertainty) with ILP to construct probabilistic models to analyze relational
databases. The SRL approaches learn the joint probability distributions of fields in the relational
datalase to predict disease outcomes and support noisy, uncertain andinoeal world data
(Muggleton, King and Sternberg, 1992). There are a variety of SRL approaches that address
EHR data issues such as: 1) missing and incomplete data; and 2) larggsaofalata causing
long run times. Natarajaat al utilized probability distributions instead of binary responses like
Atrueo or Afalseodo when |l earning relationships
classifiers that can easily track sigcgint improvements in the prediction algorithm (Getoor and
Taskar, 2007).

2.4 EHR CHALLENGES WITH MACHINE LEARNING

The data from EHRs pose significant challenges for classical machine learning and the
data mining approaches (Getoor andkBas2007; Pag et al, 2012). First, there are millions of
data points represented for each patient within the EHR (Linder et al, 2007). Knowing which
facts to use and how they relate often requires clinical intuition. Second, EHRadataultiple
meaningsFor examie, in some cases an IG®diagnosis code is linked to an explanation that
laboratory tests are being done in order to confirm or eliminate the coded diagnosis, rather than
to define that the patient has diagnosis. Third, there is missing measuremefindétg.an
EHR is multirelational, and classicatachine learningnet hods require Afl atte
into a single table. Known flattening techniques, such as computing summary features or
performing a database join operation could result indbssformation (Getoor and Taskar,

2007).

2.5 MACHINE LEARNING AND PHENOTYPING

One possible approach to constructing high quality phenotype definitions is to apply the
mathematical discipline of Machine Learning. Machine Learning is aimed at desigding a
creating algorithms that allow computers to develop behaviors based on use of empirical data,
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utilize large amounts of data to build predictive models or to recognize complex patterns.
Machine learnindpas been used successfully in a variety ofimedth care domains to discover
relationships within large databases (data mining) and to provide insight when humans did not
have enough knowledge of the data to develop effective predictive models of discovery.
Machine learnindpas also been used in thealtlke care domain in the context of natural language
processing to pull concepts and information from textual documents (Roberts et al, 2009) and for
genomic discoveries.

The Machine learningjterature is predominantly filled with research highlighting th
design and development miachine learninglgorithms. The empirical results of this type of
research aim to answer the question: Il s algor
usually measured in terms of accuracy and reported in termsofa&tes; precision/recall;
sensitivity/specificity; positive/negative predictive value; area under the ROC or precision/recall
curve; Fscore; or some statistical tests sucht@sts that show the differences based on cross
validation goals or by bodtapping.

Recently there has been interest in usiraghine learningr machine learningystems
as a tool foEHR-based phenotyping to both improve the accuracy of the phenotypes and also
reduce the time needed to developHEmR-based algorithms. Becsel of the limited duration of
EHR implementations, research relatinggdbdR-based phenotyping is relatively new and there
have not been any literature reviews describing the applicatioadifine learningp the
domain. The following section will examiriee evidence regarding the applicationr@chine
learningalgorithms to the EHPased phenotyping process to evaluate if accuracy has improved
or if time was reduced when compared to the traditional physieahphenotyping process.

2.5.1 Machine Leaning Phenotyping Literature Review

In July of 2011, | conducted a literature review to evaluate the potential role of using ML
techniques to improve the accuracy or reduce the tirs#18fdriven phenotyping. Only studies
that characterized subjects ugitpded data from the EHR were considered for this review. In
addition, the studies had to involve some type of phenotyping activities using both machine
learning algorithms and some comparison against the traditional physatapproach to
phenotypig. The outcome of the comparison would be some measure of algorithm diagnostic
accuracy (the ability to identify a phenotype correctly using the algorithm).

A total of 571 studies were screened for inclusion by reviewing the title. Of those, a total
of 60 unique articles were selected for a more detailed abstract review. Thirty of the abstracts
screened articles were eliminated because the content did not demonstretadeidR
phenotyping efforts. These studies could be categorized as:
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e Prospectivescreening, prediction or prevalence studi¢ise focus was not on

phenotyping (5, 16%)

Recruiting or system evaluation studies (11, 36%)

System or application development studies (5, 16%)

Natural language processing only studies (3, 10%)

Opinion or revigv papers (4, 13%)

Other (3, 10%)

Of the remaining 30 studies, a total of six studies were identified as using ML approaches
for phenotyping (Anand and Downs, 2010; Huang et al, 2007; Pakhomov et al, 2007; Wu et al,
2010; Xu et al, 2011; Carroll et al, 201Dnly two of the six ML studies compared the accuracy
of the ML approach to the traditional phenotyping processes, although there were limitations
with the evaluations (Pakhomov et al, 2007; Carroll et al, 2011).

There were considerable differences in Biproaches used, the phenotypes and
approaches to validation. The ML methods used by the six studies were: Support Vector
Machines (SVMs), logistic regression, Ripper, Naive Bayes, I1B1, C4.5, {ddisgnd recursive
and adaptive NoisPR. In addition, thre were differences in phenotypes and outcome
measures.

A study by Carrolkt al. (Carroll et al, 2011) indicated that it was possible to create high
performance algorithms (using support vector machines) when training on naive and refined data
sets. e algorithms significantly outperformed the traditional phenotyping approach. This
study also showed that future machine learning algorithm development may be possible with
only small numbers of manually identified cases (abott@Dcases) thus indidag less time
needed for algorithm development and validation. This limits the generalizability of the results.

In addition, only one neblinded physician created the gold standard for the investigation.

Pakhomovwet al. (Pakhomov et al, 2007) condudtihree phenotyping evaluations: 1)

NLP with ICD9 diagnostic codes; 2) manual reviewed records with do848ed approach; and 3)

NLP to manually reviewed records. A direct comparison betweenlwagbx phenotyping and
ML-based methods was not done. Thisiparison was problematic for several reasons: the
sample sizes and populations were different between each of the comparisons and the reference
dataset (billing diagnoses) was not properly validated for accuracy.

Xu et al (Xu et al, 2011) used a twstepprocess for case detection, which included
documemndevel detection strategy of concepts related to colorectal cancer (CRC) and a patient
level case determination module. Using the-step process provided more accurate case
detection when compared tiheer method of the twstep process. Random Forest, Support
Vector Machines, Logistic Regression and Ripper werelddted methods that were used on the
patientit evel data to detect cases. There was no
thetraditional phenotyping process although the authors did note that it was difficult to define
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explicit rules by manual review of aggregated data-thdked approaches were employed to
automatically find the useful patters to determine if a patient was ac@seC Using this
approach could simplify algorithm development.

The remaining three studies made comparisons betweebasgkkd approaches as they
were applied to a specific phenotyping activity. Amand (Anand and Downs, 2010) compared a
Bayesian NetworkBN) approach to reformulated BN using NGB, recursive NoisYDR and
adaptive NoisyOR approaches. Wu et al. (W&tial, 2010) compared Boosting and SVM to the
application of identifying heart failure patients. Finally, Huabgl (Huang et al, 2007)
identified Type 2 diabetic patients using Naive Bayes, IB1 and C4.5 classification techniques.
There were no comparisons made to the physieidraditional approach.

In the past year and a half, there have been two other notable studies publishseldtha
machine learning for phenotyping. Dingchexigldeveloped aipriori association rule
learning algorithm to phenotype type 2 diabetics (Dingcheng et al, 2013). This work is similar to
the relational learning ILP method as they both take advanfdgarning rules for phenotyping
that are easily understood by human users. The primary difference between the approaches is
that relational learning can directly learn from the tables of the EHR versus Apriori, which must
learn from data conflated intosingle table. The authors reported positive predictive values
greater than 90% for their algorithm.

Carroll et alconducted another study using rheumatoid arthritis as the phenotype. This
was a multisite study and combined structured query phenogypith NLP methods. The
crosssite accuracy estimates were greater than 95% positive predictive value once the
algorithms were adjusted for site variation. This study used NLP that was based on a ML
framework and not consistent with the literature reviegthods statedbove. The study was
however noteworthy because of its musite nature and high predictive values for the algorithm
(Carroll et al, 2012).

In summary, there are only a few articles, which present research surrounding the
application of ML, using coded data, for the phenotyping process. From these evaluations, there
is some evidence that suggest ML improves the accuracy of the phenotyping process. These
studies applied a variety of classical or fhessed ML approaches that took advanisiggata
placed into a fixed length feature table for analysis. The feature tables, which are critical for the
supervised learning task, were based on input from experts (physicians) and/or available
validated classified subjects. There have been noesttiit have used the relational learning
methods, which take advantage of EHlR6 s r el at i on al structur e.
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CHAPTER 3

Importance of Multi -modal Approaches to Effectively Identify Cataract Cases
from Electronic Health Records

As noted in the two preceding chastethere is increasing interest in using electronic
health records (EHRS) to identify subjects for genomic association studies, due in part to the
availability of large amounts of clinical data and the expected cost efficiencies of subject
identification.In this chapter | describe the construction and validation of an-lEa$ed
algorithm to identify subjects with agelated cataracts. The approach used in this chapter is a
multi-modal strategy utilizing many of the computational methods surveyed imeieys
chapter, ranging from structured database querying, natural language processing (NLP) on free
text documents and optical character recognition (OCR) on scanned clinical.inihgegoals
are to identify cataract subjects and related cataradia#s. Extensive validation on 3657
subjects compared the muaftiodal results to manual chart review. The algorithm was also
implemented at participating electronic MEdical Record GEnomics (eMERGE) institutions. |
demonstrate that this multhodal compudtional strategy makes it possible to more efficiently
andwith a high degree of accuracharacterize research subjects using EHR data, thus
supporting my thesis statement.

3.1 BACKGROUND

Marshfield Clinic is one of five institutions participating iretblectronic MEdical

Records and GEnomics (eMERGE) (eMERGE, 2pMxCarty CAet al, 2011; Khoet al,

2011). One of the goals of eMERGE is to demonstrate the viability of using electronic health

record (EHR) systems as a resource for selecting subjegisrfomewide association studies

( GWAS) . Mar shfieldbés GWAS focused on revealin
predispose subjects to the development ofratped cataracts. Cataract subtypes and severity

are also important attributes to consiagerd possibly bear different genetic signatures (McCarty

et al, 2003). Often, clinically relevant information on conditions such as cataracts is buried

within clinical notes or in scanned, hamdlitten documents created during office visits, making

this information difficult to extract.

Cataracts are the leading cause of blindness in the world (Thylefors et al, 1994), the
leading cause of vision loss in the United States (U.S.) (Congdon et al, 2004), and account for
approximately 60% of Medicare costs refato vision (Ellwein & Urato, 2002). Prevalence
estimates indicate that 17.2% of Americans residing in the U.S. aggehd®and older have a
cataract in at least one eye, and 5.1% have a pseudophakia/aphakia (previous cataract surgery)
(Congdon et al,@04). Age is the primary risk factor for cataracts. With increasing life
expectancy, the number of cataract cases and cataract surgeries is expected to increase
dramatically unless primary prevention strategies can be developed and successfully
implemented
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There is a growing interest in utilizing the EHR to identify clinical populations for
GWAS (1; Manolio, 2009; Wojczynski & Tiwari, 2008) and pharmacogenomics research
(McCarty et al, 2011; Wilke et al, 2011; McCarty, 2010). This interest results,tjrfrpan the
availability of extensive clinical data found within the EHR and the expected cost efficiencies
that can result when using computing technology. As in all research that attempts to identify and
guantify relationships between exposures and ows) rigorous characterization of study
subjects is essential and often challenging (Bickeboller et al, 2003; Schulz et al, 2004).

In this chapter, | describe the construction and validation of a novel algorithm that
utilizes several techniques and heurssto identify subjects with agelated cataracts and the
associated cataract attributes using only information available in the EHR. | also describe a
multi-modal phenotyping strategy that combines conventional data mining with natural language
procesaing (NLP) and optical character recognition (OCR) to increase the detection of subjects
with cataract subtypes and optimize the phenotyping algorithm accuracy for case detection. The
use of NLP and OCR methods was influenced by previous work in the dohtemedical
informatics that has shown great success in pulling concepts and information from textual and
image documents (Govindaraju, 2005; Milewski & Govindaraju, 2004; Piasecki & Broda, 2007).
| was also able to quantify the accuracy and recallefribltrmodal phenotyping components.
Finally, this algorithm was implementedthteeother eMERGE institutions, thereby validating
the transportabilitand generalizabilitpf the algorithmThe fact that other institutions were
able to run thalgorithmandobtain high precisiofbetween 95100%),is worth noting.

3.2 SIGNIFICANCE AND CONTRIBUTION

EHR-based phenotyping is a process that uses computerized analysis to identify subjects
with particular traits as captured in an EHR. This process provideffitiency of utilizing
existing clinical data but also introduces obstacles, since those data were collected primarily for
patient care rather than research purposes. Previously described EHR data issues include a lack
of standardized data entered bydians, inadequate capture of absence of disease, and wide
variability among patients with respect to data availability (this availability itself may be related
to the patient's health status) (Wojczynski & Tiwari, 2008; Gurwitz et al, 2010). Careful
pherotyping is critical to the validity of subsequent genomic analyses (Bickeboller et al, 2003),
and a source of great challenge due to the variety of phenotyping options and approaches that can
be employed with the same data (Schulze et al, 2004).

Previousinvestigators have demonstrated successful use of billing codes and NLP for
biomedical research (Denny et al, 2010; Peissig et al, 2006; Ritchie et al, 2010; Kullo et al, 2010;
Savova et al, 2010). Most often, the focus in the informatics domain is appheation and
evaluation of one specific technique in the context of a disease or domain, with a goal of
establishing that techniqgueds \(ettal(Bavavagtaland per
2010;) evaluated the performance of Clinical Texakais and Knowledge Extraction System
(CTAKES) for the discovery of peripheral arterial disease cases from radiology notes. &eissig
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al.(Peissig et al, 2006) evaluated the results of FreePharma® (Language & Computing, Inc.,
http://www.landc.be) for theonstruction of atorvastatin desesponse.

Existing research has also demonstrated the ability to use multiple techniques as part of
the implementation of a phenotyping algorithm (Kullo et al, 2010), but few have attempted to
guantify the benefits of a miti-modal approach (conventional data mining, NLP and OCR).
Those that have were able to demonstrate the benefits of two approaches (commonly coded data
in conjunction with NLP) over a single approach that was limited to a single domain (Kullo et al,
201Q Rasmussen et al, 2011). Although the use of multiple modes for phenotyping is practical,
no known work has explored beyond a bimodal approach. The research presented here
demonstrates the ability to implement anrodal phenotyping algorithm includingigntification
of the performance of the algorithm as additional modes are implemented.

3.3 METHODS

331 Mar shfieldds Study Popul ati on

The Personalized Medicine Research Project (PMRP) (McCarty et al, 2005; McCarty et al,

2008), sponsored by Marshfieldidit, is one of the largest populatitwased biobanks in the

U.S. The PMRP cohort consists of approximately 20,000 consented individuals who provided

DNA, plasma, and serum samples along with access to health information from the EHR and
guestionnaire dateelating to health habits, diet, activity, environment, and family history of

disease. Participants in this cohort generally receive most, if not all, of their primary, secondary,

and tertiary care from the Marshfield Clinic system, which provides headttices throughout
Central and Northern Wi sconsin. This research
Institutional Review Board.

3.3.2 Electronic Medical Record

Founded in 1916, Marshfield Clinic is one of the largest comprehensive medical systeens in

nation. CattailsMD, an internally developed EHR at Marshfield Clinic, is the primary source of

EHR data for this investigation. The EHR is deployed on wireless tablets and personal computers

to over 13,000 users, including over 800+ primary and specere physicians in both inpatient

and outpatient healthcare settings. Medical events including diagnoses, procedures, medications,
clinical notes, radiology, laboratory, and clinical observations are captured for patients within

this system. EHRodedd at a ar e transferred daily to Marsh
and integrated with longitudinal patient data, currently providing a median of 23 years of

diagnosis history for PMRP participants. In addition to the coded data, Marshfield has over 66

million electronic clinical narrative documents, notes, and images that are available back to

1988, with supporting paper clinical charts available back to 1916. Manual review of the
electronic records (and clinistadndéadiradd swhaesn ne
validating the EHRbased algorithms.
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3.3.3 Cataract Code-based Phenotyping

Cataract ficaseso were identified usi-coded an el e
data found within the DWfigure3.1). A goal of the electronic algtinm development was to

increase the number of subjects identified for the study (sensitivity), while maintaipositiae

predictive value (PV) of 95% or greate?PV is defined as the number of accurately classified

cases over the total number of caséases had to have at least one cataract Current Procedural
Terminology (CPT®) surgery code or multiple International Classification of Diseases9¢ICD

CM) cataract diagnostic codes. In cases where only one cataract diagnostic code existed for a
subjectNLP and/ or OCR were used to corroborate th
have an optical exam in the previous 5 years with no evidence of cataract surgery or a cataract
diagnostic code or indication of a cataract when using either NLP and/or&@R.the focus

of the eMERGE study was limited to agsated cataracts, subjects were excluded if they had

any diagnostic code for congenital, traumatic, or juvenile catatases were further restricted

to be at least 5§earsold at the time of eitkr cataract surgery or first cataract diagnosis, and

controls had to be at least-§8arsold at their most recent optical exam.
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Figure 3.1: eMERGE Cataract phenotyping algorithm. Overview of the catara@lgorithm logic used when

selecting the cataract cases and controls for the electronic MEdical Record and GEnomics (eMERGEgEnome
association study. Cataract cases were selected if the subject had either a cataract surgery, or 2+ catargct diagnoses
or 1 cataract diagnosis with either an indication found using Natural Language Processing (NLP) or Optical

Character Recognition (OCR). Controls had to have an optical exam within 5 years with no evidence of a cataract.

Both cataract cases and contradsitio be age 50 or older with controls requiring the absence of the exclusion
criteria. The details of this algorithm are published on MERGE website (eMERGE2010.

3.3.4 Cataract Subtype Multi-modal Phenotyping

A multi-modal phenotyping strategy wapplied to the EHR data and documents to
identify information pertaining to nuclear sclerotic, posteriorsajsular, and cortical (R-C)

cataract subtypes, severity (numeric grading scale), and eye. Over 3.5 million documents for the

PMRP cohortwerepfpr oces s ed

usi

ng

a

pattern

sear ch

strategy (figure8.2) consisted of three methods to identify additional cataract attributes:
conventional data mining using coded data found in the DW, NLP used on electronic text
documents, and OCR used on scanned image documents. Conventional data mining was used to

identify all subjects having documenteeP\NC subtype (ICD9 codes 36611366.16).

me C



PMRP |

i Subjects ‘
‘-\ (19,622) |
v : \

3.5 million
EMR
Documents

T
Pattern Search
Y @
Subjects with
“Cataracts”

found in Text
(7,347)

Filter using Cataract
Electronic

Algorithm

Data Warehouse

Conventional
Data Mining

Documents for Cases

MedLEE NLP & Post Processing

Natural Language

Processing

"
\

h 4

Cataract |

\
A\
A

h 4

Cases with
Undetermined
N-P-C subtypes
(3,557)

Cases with
N-P-C subtypes
Identified
by ICD9 codes
(752)

MedLEE NLP &
Post Processing

A 4

h 4

A 4

h 4

h 4

. . Subjects with . . Cases with "
Subjects with Undetermined Subjects with NO Undetermined Cases with
N-P-C subtypes N-P-C subtype N-P-C subtypes
subtypes subtypes
(1,483) 3.047) (2,817) (2.70)
c E Optical Character Y
ye Exam e Eye Exam
Images Recognition Images
—T e
h 4 A 4 h 4 Yy
Subjects with Subjects with NO Cases with NO Cases with
N-P-C subtypes N-P-C subtype N-P-C subtype N-P-C subtypes
(621) (2,426) (2,150) (640)

32

Figure 3.2: Multi -modal Cataract Subtype Processing.Overview of the information extraction strategy used in
multi-modal phenotyping to identify nuclear sclerotic, posteriorcyisular and/or cortical (R-C) cataract

subtypes. This figure depicts the”mNC subtype yield using two poptilens: 1) the leftmost path of the figure

denotes unique subject counts for the entire Personalized Medicine Research Project cohort; 2betnmgtih
denotes unique subject counts for the identified cataract cases. A hierarchical extractiorhapagsassed to

identify the NP-C subtypes. If a subject had a cataract subtype identified by a8 k@ide, Natural Language

Processing (NLP) or Optical Character Recognition (OCR) was not utilized. Cataract subtypes identified using NLP
had no subseque®CR processing.

Prior to using NLP to identify NP-C subtypes, a domain expert was consulted regarding

documentation practices surrounding cataracts, who determined that the term "cataract" should

always appear within a document for it to be consideredast to the NP-C subtypes. The

reasoning behind this was to avoid any potential ambiguity when terms related to cataract

subtype

(i

e.

, " NS"

as

an

abbrevi

at

on

for i

further support related to a cataraks all clinical documents were of interest, not just ones from
ophthalmology, this rule enabled the application of a filter to the documents to be processed by
NLP. The Medical Language Extraction and Encoding (MedLEE) NLP engine (MedLEE, 2011),
developd by Friedman and colleagues (Friedman et al, 2004) at Columbia University, was tuned
to the ophthalmology domain for this specific task to process documents from PMRP patients.
MedLEE was chosen for its demonstrated performance in other studies (Mdttopc&ak,
2005; Friedman et al, 2004) and also given the experience of one of the authors (JS) with
MedLEE in previous studies (Friedman et al, 1995; Starren & Johnson, 1996; Starren et al, 1995
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approach was created to be NLP engieatral, and other sites utilized the cTAKES (Savova et
al, 2010) engine with comparable results.

The NLP engine tuning involved iterative changes to the underlying lexicon and rules
based on aaining corpus of 100 documents. MedLEE parses narrative text documents and
outputs eXtensible Markup Language (XML) documents, which associate clinical concepts with
Unified Medical Language System (UMLS) Concept Unique Identifiers (CUIs (National Library
of Medicine, 2003Lindberg, Humphreys and McCray, 199@jh relevant status indicators,
such as negation status. To identify general cataract concepts and specific cataract subtypes,
specific CUls wer e (u e rAddtdnalCdls e usedito determiheE E 6 s
in which eye the cataract was found. A regular expression pattern search was performed on
MedLEE attributes to identify severity of the cataract and certainty of the information provided.
Refer to figure3.3 for an overview of the NLPBrocess.

Figure 3.3: Natural Language Processing of Clinical NarrativesTextualdocuments containing at least one
reference of a cataract term were fed into the MedLEE Natural Language Processingr{yibhB)and then tagged

with appropriate UMLS Concept Unique Identifiers (CUIs) before being written to an XML formatted file. Post
processing consisted of identifying the relevant UMLS cataract CUIs and then writing them along with other patient
and eventidentifying data to a file that was used in the phenotyping process.

For subjects with no cataract subtype coded or detected through NLP processing,
ophthalmology image documents were processed using an OCR pipeline developed by the study













































































































































































































































