
On Differentially Private Inductive Logic

Programming

Chen Zeng, Eric Lantz, Jeffrey F. Naughton, David Page

Department of Computer Sciences, University of Wisconsin-Madison, USA
{zeng,lantz,naughton}@cs.wisc.edu, page@biostat.wisc.edu

Abstract. We consider differentially private inductive logic program-
ming. We begin by formulating the problem of guaranteeing differential
privacy to inductive logic programming, and then prove the theoretical
difficulty of simultaneously providing good utility and good privacy in
this task. While our analysis proves that in general this is very difficult,
it leaves a glimmer of hope in that when the size of the training data
is large or the search tree for hypotheses is “short” and “narrow,” we
might be able to get meaningful results. To prove our intuition, we im-
plement a differentially private version of Aleph, and our experimental
results show that our algorithm is able to produce accurate results for
those two cases.

1 Introduction

Recently, concomitant with the increasing ability to collect personal data, pri-
vacy has become a major concern. In this paper, we focus on privacy issues that
arise in the context of inductive logic programming (ILP).

Given an encoding of a set of examples represented as a logical database
of facts, an ILP algorithm will attempt to derive a hypothesized logic program
which entails all the positive and none of the negative examples. Developing
efficient algorithms for ILP has been widely studied by the machine learning
community [1]. However, to the best of our knowledge, a differentially private
approach to ILP has not received any attention.

ILP induces hypotheses from examples collected from individuals and syn-
thesizing new knowledge from the examples. This approach naturally creates a
privacy concern — how can we be confident that publishing these hypotheses
and knowledge does not violate the privacy of the individuals whose data are
being studied? This problem is compounded by the fact that we may not even
know what data the individuals would like to protect nor what side information
might be possessed by an adversary. These compounding factors are exactly
the ones addressed by differential privacy [2], which intuitively guarantees that
the presence of an individual’s data in a dataset does not reveal much about
that individual. Differential privacy has previously been explored in the context
of other machine learning algorithms [3] [4] [5]. Accordingly, in this paper we
explore the possibility of developing differentially private ILP algorithms. Our

2 Chen Zeng, Eric Lantz, Jeffrey F. Naughton, David Page

goal is to guarantee differential privacy without obliterating the utility of the
algorithm.

An obvious but important observation is that privacy is just one aspect of
the problem; utility also matters. In this paper, we quantify the utility of a dif-
ferentially private ILP algorithm by its likelihood to produce a sound result.
Intuitively speaking, “soundness” requires an algorithm to include a hypothe-
sis that is correct in a sufficiently large subset of the database. We start by
showing the trade-off between privacy and utility in ILP. Our result unfortu-
nately indicates that the problem is very hard — that is, in general, one cannot
simultaneously guarantee high utility and a high degree of privacy.

However, a closer investigation of this negative result reveals that if we can
either reduce the hypotheses space or increase the size of the input data, then
perhaps there is a differentially private ILP algorithm that is able to produce a
high quality result while guaranteeing privacy. To verify this, we implement a
differentially private ILP algorithm and run experiments on a synthetic dataset.
At the most abstract level, ILP at its heart involves counting the number of
rows in the input that satisfies predicates, and we add noise to these counts to
ensure privacy. Our results indicate that our algorithm is able to produce results
of high quality while guaranteeing differential privacy when those two conditions
are met.

The rest of the paper is organized as follows: Section 2 briefly describes
the problem of ILP, and the notion of differential privacy. Section 3 formulates
the problem of guaranteeing differential privacy to ILP. Section 4 explores the
trade-off between privacy and utility in ILP. Section 5 proposes our differentially
private ILP algorithm, and Section 6 evaluates our algorithm on a synthetic
dataset. Section 8 concludes our work.

2 Preliminaries

In this section we review the problem of ILP and the notion of differential pri-
vacy. For ease of exposition our definitions and our theoretical results, which are
negative, are presented for the non-monotonic ILP semantics and propositional
logic, where examples may be considered as rows or tuples in a single table
database. Nevertheless, we also address the standard semantics and multi-table
database views in our empirical results in Section 5.

2.1 Inductive Logic Programming

Inductive logic programming investigates the inductive construction of first-order
clausal theories from examples. Let M+(T) be the minimal Herbrand model of
a definite clause T . The problem of inductive logic programming is formulated
in Definition 1.

Definition 1. (Inductive logic programming [1]): Given two languages,

– L1: the language of database.

On Differentially Private Inductive Logic Programming 3

– L2: the language of hypotheses.

Given a consistent set of background knowledge D ⊆ L1, find a hypothesis H ∈
L2, such that:

1. Validity: ∀h ∈ H, h is true in M+(D).
2. Completeness: if general clause g is true in M+(D), then H |= g
3. Minimality: there is no proper subset G of H which is valid and complete

In the rest of the paper, we assume both L1 and L2 are fixed unless otherwise
specified. Note that in the literature of differential privacy [2], the terminology
of “background knowledge” is different from the context in ILP and denotes
the side information an adversary possesses to attack the privacy of a specific
individual in the underlying database. To prevent that confusion, we use the
term “database” to represent the background knowledge shown in Definition 1.
In the rest of this paper, we use ‖D‖ to represent the number of rows in a
database D. We also refer L2 as the hypotheses space.

2.2 Differential Privacy

Intuitively, differential privacy guarantees that the presence or absence of an
individual’s information has little effect on the output of an algorithm, and thus,
an adversary can learn limited information about any individual. More precisely,
for any database τ ∈ D, let nbrs(τ) denote the set of neighboring databases of
τ , each of which differs from τ by at most one row. Differential privacy requires
that the probability of an algorithm to output the same result on any pair of
neighboring databases are bounded by a constant ratio.

Definition 2. (ǫ-differential privacy [2]): For any input database τ , a random-
ized algorithm f is ǫ-differentially private iff for any S ⊆ Range(f), and any
database τ ′ ∈ nbrs(τ),

Pr(f(τ) ∈ S) ≤ eǫ Pr(f(τ ′) ∈ S)

where Pr is the probability taken over the coin tosses of the algorithm f .

One way to guarantee differential privacy for a count query is to perturb the
correct result. In particular, Ghosh et al. [6] propose the geometric mechanism
to guarantee ǫ-differential privacy for a single count query. The geometric mech-
anism adds noise ∆ drawn from the two-sided geometric distribution G(ǫ) with
the following probability distribution: for any integer σ,

Pr(∆ = σ) ∼ e−ǫ|σ| (1)

The geometric mechanism is a discrete variant of the Laplacian mecha-
nism [7], which adds random noise drawn from the Laplacian distribution. To
ensure differential privacy for multiple count queries, we first compute the sen-
sitivity of those queries, which is the largest difference between the output of
those queries on any pair of neighboring databases.

4 Chen Zeng, Eric Lantz, Jeffrey F. Naughton, David Page

Definition 3. (Sensitivity): Given d count queries, q = 〈q1, . . . , qd〉, the sensi-
tivity of q is:

Sq = max
∀τ,τ ′∈nbrs(τ)

|q(τ)− q(τ ′)|1

Notice that the output of q is a vector of dimension d, and we use |x − y|p
to denote the Lp distance between two vectors x and y. The following theorem
is a straightforward extension of the Laplacian mechanism to the geometric
mechanism.

Theorem 1. Given d count queries q = 〈q1, . . . , qd〉, for any database τ , the
database access mechanism: Aq(τ) = q(τ) + 〈∆1, . . . , ∆d〉 where ∆i is drawn
i.i.d from the geometric distribution G(ǫ/Sq) (1), guarantees ǫ-differential pri-
vacy for q.

As proved in [7], a sequence of differentially private computations also ensures
differential privacy. This is called the composition property of differential privacy
as shown in Theorem 2.

Theorem 2. [7] Given a sequence of computations, denoted as f = f1,. . .,fd,

if each computation fi guarantees ǫi-differential privacy, then f is (
∑i=d

i=1 ǫi)-
differentially private.

3 Problem Formulation

In analogy to Definition 2, we formulate the problem of guaranteeing differential
privacy to ILP in Definition 4.

Definition 4. (Diff. Private ILP): An ILP algorithm f is ǫ-differentially private
iff for any pair of neighboring databases 1 D1 and D2, for any H ∈ L2.

Pr(f(D1) = H) ≤ eǫ Pr(f(D2) = H)

By Definition 4, the output hypothesis does not necessarily satisfy the three
requirements stated in Definition 1. The reason is that by Definition 2, any dif-
ferentially private algorithm must be randomized in nature where output range
is defined as a property of the algorithm f regardless of the input database. As
a result, Definition 4 defines a differentially private ILP algorithm over all the
possible hypotheses instead of those “correct” ones.

4 Trade-off between Privacy and Utility

Although privacy is a very important problem in ILP, utility also matters; a
trivial differentially private ILP algorithm can be generated by randomly out-
putting a hypothesis regardless of the database. Though private, this algorithm
is useless in practice. Thus, we also need to quantify the utility of a hypothesis.

1 In the differential privacy literature, databases are typically thought of as single
tables. In a multi-relational setting, the proper definition of “neighboring” might
change. For example, in a medical domain a neighboring database would remove one
patient along with their respective prescriptions and diagnoses from other tables.

On Differentially Private Inductive Logic Programming 5

4.1 Our Utility Model

Our intuition for the utility model is to relax the requirements on hypotheses in
Definition 1. In particular, we relax both the validity and completeness require-
ment, and introduce the notion of δ-usefulness (0 ≤ δ ≤ 1).

Definition 5. (δ-usefulness): A hypothesis H is δ-useful for the input database
D iff ∃D′ ⊆ D, and ‖D′‖/‖D‖ ≥ δ such that

1. Approx. validity: ∀h ∈ H, h ∈ M+(D′).
2. Approx. completeness: if a general clause g is true in M+(D′), then H |= g.
3. Minimality: there is no subset of H which is validate and complete in D′.

The notion of δ-usefulness quantifies the quality of a hypothesis in terms
of the percentage of input database in which that hypothesis is correct. Fur-
thermore, we define the quality of a differentially private ILP algorithm by its
likelihood η to produce hypotheses of high quality. This is shown in Definition 6.

Definition 6. ((δ, η)-approximation): An ILP algorithm f is (δ, η)-approximate
iff for any input database D,

Pr(f(D) is δ-useful) ≥ 1− η

Both δ and η are within the range of (0, 1). Another way to understand the
notion of (δ, η)-approximation is through the idea of PAC-learning [8] where the
notion of “approximate correctness” is defined in terms of δ-usefulness. Next, we
will quantify the trade-off between privacy and utility in ILP.

4.2 A Lower Bound on Privacy Parameter

Our techniques to prove the lower bound on the privacy parameter come from
differentially private itemset mining [9]. Perhaps this is no surprise since both
frequent itemset mining and association rule mining have been closely connected
with the context of ILP [10] in which frequent itemset mining can be encoded as
a ILP problem. We prove the lower bound on the privacy parameter ǫ if an ILP
algorithm must be both ǫ-differentially private and (δ, η)-useful. This is shown
in Theorem 3.

Theorem 3. For any ILP algorithm that is both ǫ-differentially private and
(δ, η)-useful,

ǫ ≥
ln(2n(1− η))

2((1− δ)‖D‖+ 1)

where n is the number of atoms in the language of hypotheses L2.

Proof. We model the language of the input database L1 as follows: each atom is
taken from the set I = {a1, . . . , an}, and each individual’s data is represented by
a conjunctive clause of the atoms. We also model the language of the hypotheses
L2 to be all the possible conjunctive clauses over the set of atoms I.

6 Chen Zeng, Eric Lantz, Jeffrey F. Naughton, David Page

Suppose f is an ILP algorithm that is both ǫ-differentially private and (δ, η)-
useful. To better understand our proof technique, we add another atom an+1

to I, and then we construct an input database D of size m by including δ ∗m
clauses of the form h1 = a1 ∧ a2 ∧ . . . ∧ an ∧ an+1. The rest are constructed as
simply h2 = an+1. Since the number of all the hypotheses including an+1 is 2n,
there must exist a particular hypothesis h3 such that Pr(f(B) = h3) ≤ 1/2n

Without loss of generality, let h3 = a1∧a2∧ . . . ak∧an+1. Then, we construct
another database D′ from D by replacing one clause of h1 by h3, and then every
clause of h2 by h3. Thus, there is a total number of δm − 1 clauses of h1 in
B′ and the rest of them being h3. It is not hard to show that h3 is the only δ-
useful hypothesis in B: any subset of B of cardinality δm must contain at least
one h3, and thus, the δ-valid hypotheses are those that can be entailed by h3.
Hence, Pr(f(D′) = h3) ≥ 1− η. Since D′ and D differ by 2((1− δ)m+ 1) rows
(one can think of this difference as the edit distance between two databases), by
differential privacy,

1− η ≤
eǫ(2((1−δ)m+1))

2n

Theorem 3 then follows.

The result of Theorem 3 is similar in flavor to [11], which proved that there
is no differentially private algorithm that is able to answer O(n2) count queries
in a database of size n with reasonable accuracy. That is, if an ILP algorithm
can be thought of as a sequence of count queries, and if the number of count
queries exceeds a certain threshold, then the ILP algorithm cannot produce a
result of high quality.

This is a discouraging result, which states that in general, it is very hard to
simultaneously guarantee both differential privacy and a high utility requirement
since ‖L2‖ grows exponentially with the number of atoms. Theorem 3 suggests
that in order to decrease the lower bound on the privacy parameter, we must
either increase the size of the database ‖D‖, or reduce the number of atoms in
the hypotheses space L2. If a real world problem meets those two conditions,
we might be able to get results of high quality while guaranteeing differential
privacy. To verify this, we propose a differentially private ILP algorithm.

5 Differentially Private ILP Algorithm

In this section, we will first briefly describe a typical non-private ILP algorithm,
inverse entailment as implemented in Aleph [12], and then show our revisions of
the non-private algorithm to guarantee differential privacy. As we shift our focus
to Aleph, we also extend from propositional logic to predicate calculus. In the
rest of the paper, an atom is now an atomic formula of first-order logic, i.e., an
n-ary predicate applied to a vector of n terms.

5.1 A Non-Private ILP Algorithm

The non-private ILP algorithm works as follows:

On Differentially Private Inductive Logic Programming 7

1. Select an example (selection): Select an example to be generalized.

2. Build most-specific-clause (saturation [13]): Construct the most specific clause
that entails the example selected, and is within language restrictions pro-
vided. This is usually a definite clause with many literals, and is called the
“bottom clause.”

3. Search (reduction): Find a clause more general than the bottom clause. This
is done by searching for some subset of the predicates in the bottom clause
that has the “best” score.

4. Remove redundant (cover removal): The clause with the best score is added
to the current hypothesis, and all examples made redundant are removed.

A careful analysis of the above steps shows that the selection and reduc-
tion steps directly utilize the input data while the saturation and cover removal
steps depend on the output from the previous step. Thus, as discussed in lit-
erature [2], as long as we can guarantee the output from both selection and
reduction is differentially private, then it is safe to utilize those output in subse-
quent computation. Hence, we only need to consider the problem of guaranteeing
differential privacy for those two steps.

The input to the learning algorithm consists of a target predicate, which
appears in the head of hypothesized clauses. The input database can be divided
into two parts: the set of positive examples E+ ⊆ D which satisfy the target
predicate, and the set of negative examples E− ⊆ D which do not. Furthermore,
the bottom clause is normally expressed as the conjunctive form of the atoms,
and thus we also use a “subset of the atoms” to denote the clause that is of the
conjunctive form of the atoms in that subset.

5.2 A Differentially Private Selection Algorithm

The non-private selection algorithm is a sampling algorithm that randomly se-
lects an individual’s data to generalize. However, as discussed in [7], no sam-
pling algorithm is differentially private. In this paper, we propose to use domain
knowledge to overcome this obstacle. That is, we utilize the domain knowledge to
generate a “fake” example. We want to emphasize that the domain information
might come from external knowledge or previous interactions with the database.
This information does not weaken the definition of differential privacy as stated
in Definition 2, and we only utilize these previous known information to gen-
erate a fake example. In the worst case, this example can be expressed as the
conjunction of all the predicates, which is considered as the public information.
In that way, the new selection step does not rely on the input database, and
thus, it is differentially private2.

2 An alternative is to relax the privacy definition from ǫ-differential privacy to (ǫ, δ)-
differential privacy. In this context, δ refers to the probability that the algorithm
violates the ǫ-differential privacy guarantee. We do not explore it here as it makes
the already burdensome utility bounds much worse.

8 Chen Zeng, Eric Lantz, Jeffrey F. Naughton, David Page

5.3 A Differentially Private Reduction Algorithm

The non-private reduction algorithm actually consists of two steps: 1) the heuris-
tic method to search for a clause, which is a subset of predicates in the bottom
clause, and 2) the scoring function to evaluate the quality of a clause. Although
there are many different methods to implement the reduction algorithm [1], in
this paper we follow the standard usage in Aleph in which the heuristic method is
a top-down breadth-first search and the scoring function is coverage (the number
of covered positive examples minus the number of covered negative examples).
The search starts from the empty set and proceeds by the increasing order of
the cardinality of the clauses until a satisfying clause is found. The pseudocode
of the non-private reduction algorithm is shown in Algorithm 1.

Algorithm 1 Non-Private Reduction

Input: positive examples E+; negative examples E−; bottom clause Hb

Output:the best clause

1: k = number of atoms in Hb

2: L = the lattice on the subset of atoms in Hb

3: for i = 1 to k do

4: for each set S ∈ L, ‖S‖ = i do
5: P = the number of positive examples satisfying S
6: N = the number of negative examples satisfying S
7: H∗ = S if S has better coverage than the previously best clause
8: end for

9: end for

10: return H∗

A Näıve Differentially Private Algorithm We observe that the only part
in Algorithm 1 that needs to query the input database is in the computation
of P and N shown in line 5 and line 6, respectively. Therefore, as long as we
can guarantee differential privacy in those two computations, then the reduction
algorithm is differentially private. We do so by utilizing the geometric mecha-
nism. Given a clause h, let q+h and q−h be the queries that compute the number
of positive examples and negative examples satisfying h, respectively. Then, as
shown in Theorem 4, the sensitivity to evaluate a set of clauses is equal to the
number of clauses in the set.

Theorem 4. Given a set of clauses H = {h1, h2, . . . , hn}, and the corresponding
evaluation queries q = {q+h1

, q−h1
, . . . , q+hn

, q−hn

}, the sensitivity of q is n.
We show our differentially private reduction algorithm in Algorithm 2. By

Theorem 4, Algorithm 2 is differentially private as shown in Theorem 5.

Theorem 5. Algorithm 2 is ǫ-differentially private.

On Differentially Private Inductive Logic Programming 9

Algorithm 2 Diff. Private Reduction

Input:positive examples E+; negative examples E−; bottom clause Hb; privacy pa-
rameter ǫ
Output:the best clause

1: k = number of atoms in Hb

2: L = build a lattice on the subset of atoms in Hb

3: for i = 1 to k do

4: for each subset h ∈ L, ‖S‖ = i do
5: P ′ = q+h (E+) + G(ǫ/‖L‖)
6: N ′ = q+h (E−) + G(ǫ/‖L‖)
7: H∗ = S if S has better coverage than previously best clause w.r.t. P ′,N ′

8: end for

9: end for

10: return H∗

The Relevance-Aware Differentially Private Reduction Algorithm We
observe that Algorithm 2 has only considered the worst-case scenario in which
the number of clauses to be evaluated is the whole lattice whereas in practice,
the reduction algorithm seldom goes through every clause in the lattice. This
occurs when criteria are set to specify unproductive clauses for pruning (prevent-
ing evaluation of supersets) or for stopping the algorithm. Thus, the number of
clauses evaluated in practice is much less than that in the whole lattice, which
means the scale of the noise added is larger than necessary. If the quality of a
clause does not meet certain criterion, then there is no need to evaluate the sub-
tree in the lattice rooted at that clause. This algorithm is shown in Algorithm 3.

Algorithm 3 Relevance-Aware Diff. Private Reduction

Input: positive examples E+; negative examples E−; bottom clause Hb; privacy pa-
rameter ǫ; levels ℓ
Output:the best clause

1: L = build a lattice on the subset of atoms in Hb

2: for i = 0 to ℓ do

3: β = the number of clauses with k atoms existing in the lattice
4: for each subset h ∈ L, ‖S‖ = i do
5: P ′ = q+h (E+) + G(ǫ

β(ℓ+1)
)

6: N ′ = q+h (E−) + G(ǫ
β(ℓ+1)

)

7: H∗ = S if S has better coverage than the previously best clause
8: if P ′ and N ′ does not meet the criterion then

9: Delete the subtrees in the lattice rooted at S
10: end if

11: end for

12: end for

13: return H∗

10 Chen Zeng, Eric Lantz, Jeffrey F. Naughton, David Page

We have also introduced another parameter ℓ in Algorithm 3 to specify the
maximal cardinality of the desired clause, reducing the number of clauses to be
evaluated. We prove Algorithm 3 is differentially private in Theorem 6.

Theorem 6. Algorithm 3 is ǫ-differentially private

5.4 Our Differentially Private ILP Algorithm

By using our differentially private selection algorithm and the relevance-aware
differentially private reduction algorithm, we present our differentially private
ILP algorithm in Algorithm 4. Since the output might consist of multiple clauses,
we add the input parameter k which specifies the maximal number of clauses
in the theory. We understand that this is not a usual setting for the usage of
Aleph. Developing a differentially private algorithm that does not make use of
k is an interesting challenge for future work.

Algorithm 4 Diff. Private ILP Algorithm

Input: positive examples E+; negative examples E−; privacy parameter ǫ; levels ℓ;
rounds k
Output:the best theory

1: T = ∅
2: for i = 1 to k do

3: Hb = Select a bottom clause in a differentially private way
4: h = Relevance-Aware Diff. Private Reduction(E+, E−, ǫ/k, ℓ)
5: Add h to T
6: Remove redundant examples using h
7: end for

8: return T

By Theorem 2, Algorithm 4 is differentially private.

Theorem 7. Algorithm 4 is ǫ-differentially private.

6 Experiments

In our experiments, we run our differentially private algorithm on synthetic
data generated by the train generator described in [13], in which the goal is
to discriminate eastbound versus westbound trains based on the properties of
their railcars. In all the experiments, we set the privacy parameter ǫ to be 1.0,
and vary both the size of the data and the desired hypothesis to see how our
algorithm performs. We measure the quality of our algorithm in terms of the
accuracy of the output theory on a testing set. In all of our experiments, the
näıve guess is the clause that assumes every train is eastbound.

In our first experiment, we consider a hypothesis of one clause. We vary
the number of atoms in the clause as shown in Figure 1. As we can see in
Figure 1a, when there are three atoms in the desired clause, our private learning

On Differentially Private Inductive Logic Programming 11

algorithm is able to learn the clause more accurately with more training data as
discussed in Section 4. Furthermore, we also observe that our relevance-aware
reduction algorithm shown in Algorithm 3 produces better results than the näıve
reduction algorithm, demonstrating that reducing added noise by pruning low
scoring clauses produces more accurate results. However, when increasing the
number of atoms in the desired clause, the quality of our algorithm decreases.
This is no surprise as the hypotheses space grows exponentially with the number
of the atoms.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.4

0.5

0.6

0.7

0.8

0.9

1

Database size

A
cc

ur
ac

y

Naive guess
Naive Private learning
Private Learning

(a) Three Atoms

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Database size

A
cc

ur
ac

y

Naive guess
Private learning
Non−Private Aleph

(b) Six Atoms

Fig. 1: One Clause with Different Number of Atoms

We also investigate the effects on the number of clauses in a desired hypoth-
esis, each of which consists of three atoms. In Figure 2a, our private learning
algorithm produces high quality hypothesis with the growth in the size of the
data, which is significantly better than the case of a single clause with six atoms.
This is because the addition of a clause only increases the hypotheses space mul-
tiplicatively instead of exponentially. In both Figure 1 and Figure 2a we see that
a large performance penalty is paid by the differentially private algorithms, as
the non-private algorithm achieves perfect accuracy in all cases. Figure 2b shows
the percentage of error reduction as more clauses need to be learned, showing
the penalty due to the privacy budget being split among multiple clauses.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Database size

A
cc

ur
ac

y

Naive guess
Private learning
Non−Private Aleph

(a) Two Clauses

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Database size

%
 o

f E
rr

or
 R

ed
uc

tio
n

One rule
Two rules
Three rules

(b) Multiple Clauses

Fig. 2: Multiple Clauses with the Same Number of Atoms

12 Chen Zeng, Eric Lantz, Jeffrey F. Naughton, David Page

7 Related Work

The ILP has been well studied by the machine learning community, and see [1] [14]
for a comprehensive survey on this field. ILP has been proved to be a great
success in many applications ranging from natural language processing [15] to
electronic health records processing [16] [17]. However, to the best of our knowl-
edge, no previous work has addressed the privacy issues arising in the context
of ILP, and our paper is the first one to discuss that problem.

The notion of differential privacy was proposed by Dwork et al. [2], and
has received great attentions in both the machine learning community [3] [4]
and the theory community [18] [11]. Dwork et al. [7] also propose the addition of
Laplacian noise to guarantee differential privacy and [6] propose to add geometric
noise to achieve the same goal. [11] proves that there is no differentially private
algorithm that is able to answer O(n2) count queries in a database of size n
with reasonable accuracy. Another way to guarantee differential privacy is to
generate synthetic data in a differentially private way, and then run the non-
private ILP algorithm on the private data [19]. However, the latest hardness
result on differentially private data generation [20] [21] might prove this path
elusive.

8 Conclusion

In this paper, we have proposed a differentially private ILP algorithm. We have
precisely quantified the trade-off between privacy and utility in ILP, and our
results indicate that in order to satisfy a non-trivial utility requirement, an ILP
algorithm incurs a huge risk of privacy breach. However, we find that when
limiting the hypotheses space and increasing the size of the input data, our
algorithm is able to output a hypothesis with high quality on synthetic data set.
To the best of our knowledge, ours is the first one to attack this problem. With
the availability of privacy-sensitive data such as electronic health records, we
hope more and more people begin to pay attention to the privacy issues arising
in the context of ILP.

There are many potential opportunities for future work. One such direction
would be to formalize the notion of differential privacy with first-order logic, and
discuss the tradeoff between privacy and utility in that context. Furthermore,
we have only considered ILP with definite clauses, and it would be interesting
to expand our work to statistical relational learning [14]. Finally, since our algo-
rithm requires one to limit the hypotheses space, it would also be interesting to
investigate the feature selection problem in the context of differential privacy.

References

1. Muggleton, S., de Raedt, L.: Inductive logic programming: Theory and methods.
Journal of Logic Programming (1994)

2. Dwork, C.: Differential privacy. In: ICALP. (2006)

On Differentially Private Inductive Logic Programming 13

3. Williams, O., McSherry, F.: Probabilistic Inference and Differential Privacy. In:
Advances in Neural Information Processing Systems 23. (2010)

4. Rubinstein, B.I.P., Bartlett, P.L., Huang, L., Taft, N.: Learning in a large function
space: Privacy-preserving mechanisms for svm learning. Journal of Privacy and
Confidentiality (2012)

5. Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially private empirical risk
minimization. J. Mach. Learn. Res. (2011)

6. Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing
privacy mechanisms. In: STOC. (2009)

7. Dwork, C., Mcsherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: TCS. (2006)

8. Valiant, L.G.: A theory of the learnable. Commun. ACM (1984)
9. Zeng, C., Naughton, J.F., Cai, J.Y.: On differentially private frequent itemset

mining. Proc. VLDB Endow. (2012)
10. Dehaspe, L., Raedt, L.D.: Mining association rules in multiple relations. In: ILP.

(1997)
11. Ullman, J.: Answering n2+o(1) counting queries with differential privacy is hard.

STOC (2013)
12. Srinivasan, A.: Aleph manual
13. Muggleton, S.: Inverse entailment and progol. In: New Generation Computing
14. De Raedt, L.: Statistical relational learning: an inductive logic programming per-

spective. PKDD (2005)
15. Mooney, R.J.: Inductive logic programming for natural language processing. In: IN

MUGGLETON, S. (ED.), INDUCTIVE LOGIC PROGRAMMING: SELECTED
PAPERS FROM THE 6TH INTERNATIONAL WORKSHOP. (1997)

16. Page, D., Costa, V.S., Natarajan, S., Barnard, A., Peissig, P., Caldwell, M.: Iden-
tifying adverse drug events by relational learning. (2012)

17. Harpaz, R., Haerian, K., Chase, H.S., Friedman, C.: Mining electronic health
records for adverse drug effects using regression based methods. In: Proceedings
of the 1st ACM International Health Informatics Symposium. IHI ’10 (2010)

18. Thaler, J., Ullman, J., Vadhan, S.P.: Faster algorithms for privately releasing
marginals. In: ICALP. (2012)

19. Dwork, C.: Differential privacy: a survey of results. In: Proceedings of the 5th
international conference on Theory and applications of models of computation.
TAMC’08 (2008)

20. Ullman, J., Vadhan, S.: Pcps and the hardness of generating private synthetic
data. In: Theory of Cryptography - 8th Theory of Cryptography Conference, TCC
2011. (2011)

21. Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.: On the complexity
of differentially private data release: efficient algorithms and hardness results. In:
Proceedings of the 41st annual ACM symposium on Theory of computing. STOC
’09 (2009)

