Clustered Disease Rates
A Hierarchical Model for Spatially
Hierarchical Models for Spatial Clustering

Murray K. Clayton

and

Ronald E. Cangaron

August 9, 2001

University of Wisconsin – Madison
Department of Statistics
Department of Biostatistics and Medical Informatics

https://www.biostat.wisc.edu/~ronald
Smoothing may mask clusters.

Smoothed estimators are generally preferred.

- Raw rates tend to be unstable.

- Identification of clusters.

- Examining spatial patterns of disease.

- Useful for:
 - Display disease rate or SMRs as shading on map.

Mapping of Disease Rates
New York Leukemia Data

Raw Rates
Lawson (1995), Lawson & Clark (1999),

Point process models •

Dempston & Holmes (2001),

Partitioning methods •

Besag, York & Mollie (1991), Waller et al. (1997),

Spatial autoregressive models •

Clayton & Kaldor (1987),

Global shrinkage models •

Bayes or Empirical Bayes Approaches

Hierarchical Models for Spatial Clustering

Clayton & Gampe

August 2001
New York Leukemia Data

Shrinkage Estimates for Rates
Proper, but weak Gamma priors for γ and τ.

and ϕ and ψ not separately identified by the likelihood.

\[(1_{\infty} / Y, Y) \sim (N, \epsilon) = \epsilon \]

Spatial heterogeneity effects: ϵ

\[(\mathbf{d} / Y, Y) \sim (N \phi, \cdots, \phi) = \phi \]

Spatial autocorrelation effects: ϕ

A flat prior for η (or g).

Fixed effect: ρ (could replace with x).

\[\log \psi + \psi + \eta = (d) \]

\[\text{Poisson}(\mu) \sim \mathcal{O} \]

Spatial Model of Waller et al. (1997)

Hierarchical Models for Spatial Clustering

Ganapathy G. Chilamkurti
Proposed Model for Clustering
Can serve as an importance sample for other priors.

- Discrete uniform prior for k.

- Finite number of potential clusters available.

\[
c_1, c_2, \ldots, c_k \text{ i.i.d. } p(c) \cdot
\]

We use $\theta_0 = 0.355$ so that $P(0.25 \leq \theta^a \leq 0.99) = 0.15$.

We must be fixed.

\[
\theta_0 \text{ i.i.d. Normal distribution for } \theta_0, \ldots, \theta_1, \ldots, \theta_k \cdot
\]

Prior Distribution for θ.

Hierarchical Models for Spatial Clustering

Canunnion & Cliellion
• Place prior on center/radius of circle adjusted to avoid empty circles.

• Cell belongs to cluster if centroid falls inside circle.

Maximum Geographic Radii:

• Radii ranging from 0 km up to 20 km.

• Circular clusters centered at cell centroids.

Potential Clusters for New York Data
Conjugate Gamma prior leads to Gibbs update.

- Parameter \(\tau \).

- Distribution for Metropolis algorithm.

Approximate Gibbs sampler serves as proposal

Likelihood.

Normal priors conjugate to normal approximation for

- Parameters \(\mu, \theta_1, \ldots, \theta_k, \epsilon_1, \ldots, \epsilon_n \).

- General approach to inference given in Gelman et al. (1995).

- Hierarchical generalized linear model.

- Suppose \(c_1, \ldots, c_k \) are known.

Posterior Simulation

Hierarchical Models for Spatial Clustering

Gangnan & Chajlin
Select one of the available transitions at random.

CHANGE the composition of a cluster.

DROP a cluster.

ADD a new cluster.

Possible transitions between models:

1997) to transition between models.

Use reversible jump MCMC (RJMCMC) algorithm (Green,

In reality, \(k \) and \(c_i \), \(\ldots \), \(c_h \) are unknown.

Posterior Simulation
New York Leukemia Data

Probability Cell Belongs to a Cluster (k>0)
New York Leukemia Data

Posterior Mean for Cluster-Related Risk (k=3)
New York Leukemia Data

Posterior Means for Rates (k=3)
New York Leukemia Data

Ratio of Posterior Mean Rates ($k=3/k=0$)
Remarks

Concluding Remarks

- Inclusion of covariate effects and/or temporal effects
- Number of clusters
- Formal and informal methods available for identifying the
 Reversible jump MCMC algorithm for inference
- Natural prior specification for clustering component of model
- Extra-Poisson variation
- Proposed spatial model for both clustering effects and

Hierarchical Models for Spatial Clustering

Ganagnon E. Cluytens
\[
\frac{\max_j \frac{V_j}{l_j}}{l_j - l_{j+1}} \cdot \frac{\mathcal{V}}{\mathcal{D}} = \mathcal{V}_m
\]

- Probability of selecting cluster \(i, j \)
- Select cluster radius uniformly from available radii.
- Center the cluster at centroid of that cell.
- Select a cell by throwing a dart at study region.

"Uniform Prior for Clusters"
Propose cluster \(c \) with probability proportional to posterior density.

Propose cluster \(c \) with posterior probability proportional to posterior.

\[
\frac{\theta | c}{\theta |} \cdot \frac{1 + \theta^2 \mathbb{E}}{\theta^2 \mathbb{E} - 2 \theta \mathbb{O}} = \frac{\theta^2}{\theta}
\]

Find posterior mode for the relative risk.

For each potential cluster \(c \),

Need to propose a cluster \(c \) and risk \(1 + 1 \).

Proposals for the ADD Step
Acceptance probability is easily calculated.

ADD & DROP steps reverse each other.

Equivalent to setting $\theta = 0$.

Propose model without cluster c_i.

Assume cluster k is chosen (without loss of generality).

Select one of the k current clusters at random.

Proposals for the DROP Step
Proposed new cluster is always accepted.

Density:

Select cluster \(c \) with probability proportional to posterior.

Model including that cluster with relative risk \(\theta \).

For each potential cluster \(c \), find the posterior density of the

Drop cluster \(c \) from the model.

Keep the current value of \(\theta \) fixed.

Assume cluster \(k \) is chosen (without loss of generality).

Select one of the \(k \) current clusters at random.

Proposals for the CHANCE Step
Expected Cluster Risks

New York Leukemia Data

Hierarchical Models for Spatial Clustering

Gangnon & Clayton