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ABSTRACT
A new statistical method for mapping quantitative trait loci (QTL), called multiple interval mapping

(MIM), is presented. It uses multiple marker intervals simultaneously to fit multiple putative QTL directly
in the model for mapping QTL. The MIM model is based on Cockerham’s model for interpreting genetic
parameters and the method of maximum likelihood for estimating genetic parameters. With the MIM
approach, the precision and power of QTL mapping could be improved. Also, epistasis between QTL,
genotypic values of individuals, and heritabilities of quantitative traits can be readily estimated and analyzed.
Using the MIM model, a stepwise selection procedure with likelihood ratio test statistic as a criterion is
proposed to identify QTL. This MIM method was applied to a mapping data set of radiata pine on three
traits: brown cone number, tree diameter, and branch quality scores. Based on the MIM result, seven, six,
and five QTL were detected for the three traits, respectively. The detected QTL individually contributed
from z1 to 27% of the total genetic variation. Significant epistasis between four pairs of QTL in two traits
was detected, and the four pairs of QTL contributed z10.38 and 14.14% of the total genetic variation.
The asymptotic variances of QTL positions and effects were also provided to construct the confidence
intervals. The estimated heritabilities were 0.5606, 0.5226, and 0.3630 for the three traits, respectively.
With the estimated QTL effects and positions, the best strategy of marker-assisted selection for trait
improvement for a specific purpose and requirement can be explored. The MIM FORTRAN program is
available on the worldwide web (http://www.stat.sinica.edu.tw/zchkao/).

THE basic principle of using genetic markers to study genetic marker map throughout the genome, IM can
quantitative trait loci (QTL) is well established (Sax be performed at any position covered by markers to

1923; Thoday 1960; Jayakar 1970; Lander and Bot- produce a continuous LRT statistical profile along chro-
stein 1989; Carbonell et al. 1992; Haley and Knott mosomes. The position with the significantly largest
1992; Jansen 1993; Zeng 1993, 1994). Sax (1923) first LRT statistic in a chromosome region is an estimate of
used pattern and pigment markers in beans to analyze QTL position. It has been shown that IM has more
genes affecting seed size by investigating the segrega- power and requires fewer progeny than the methods
tion ratio of F2 progeny of different crosses. Thoday for direct analysis of markers (Lander and Botstein
(1960) proposed the idea of using two markers to 1989; Haley and Knott 1992; Zeng 1994). Haley and
bracket a region for detecting QTL. The basic idea of Knott (1992) proposed a regression version of interval
Sax and Thoday for detecting the association of a QTL mapping to approximate IM. Although Haley and
with a marker rests on the comparisons of trait means Knott’s method could save time in computation and
of different marker (chromosomal segment) classes. produce similar results to those obtained by IM, the
These methods, such as t -test and simple and multiple estimate of the residual variance is biased, and the power
regressions, directly analyze markers. of QTL detection can be affected (Xu 1995).

In recent years, the advent of fine-scale molecular The approach of IM considers one QTL at a time in
genetic marker maps for various organisms by molecular the model for QTL mapping. Therefore, IM can bias
biology techniques has greatly facilitated the systematic identification and estimation of QTL when multiple
mapping and analysis of individual QTL. Lander and QTL are located in the same linkage group (Lander
Botstein (1989) proposed a much-improved method, and Botstein 1989; Haley and Knott 1992; Zeng
named interval mapping (IM), for mapping QTL. They

1994). To deal with multiple QTL problems, Jansen
used one marker interval at a time to construct a putative

(1993) and Zeng (1993, 1994) independently proposedQTL for testing by performing a likelihood ratio test
the idea of combining IM with multiple regression(LRT) at every position in the interval. With a fine-scale
analysis in mapping. Zeng named this combination
“composite interval mapping” (CIM). The approach of
CIM is that, when testing for the putative QTL in an
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that the test can be improved. The model of CIM in- up to digenic epistasis is considered, the relation be-
tween the genotypic value of individual i, Gi, and thecludes one QTL and markers. Hoeschele and Vanran-

den (1993a,b), Satagopan et al. (1996), and Sillanpaa genetic parameters can be expressed in the equation
and Arjas (1998) used a Bayesian approach in estima-

Gi 5 m 1 o
m

j51

aj xij 1 o
m

j,k

wjk (xijxik), i 5 1, · · ·, 2m, (1)tion and to identify QTL. Doerge and Churchill
(1996) used permutation tests for QTL detection. Map-
ping for QTL controlling binary trait and ordinal cate- where xij is coded as 1⁄2 or 21⁄2 if the genotype of Q j is
gorical traits is presented by Hackett and Weller Q jQ j or Q jqj, respectively, aj is the corresponding main
(1995) and Xu and Atchley (1996). In human and effect of Q j, and wjk is the epistatic effect between Q j

animal genetics, the mixed model, including random and Qk. The main advantage of Cockerham’s model is
effect, has been applied to QTL mapping (Xu and that it possesses an orthogonal property in modeling
Atchley 1995; Grignola et al. 1996a,b). genetic parameters.

Ideally, we would extend the current QTL mapping To assist with explaining the estimation of the genetic
models to a multiple QTL model for mapping multiple effects in the MIM model (Equation 3), the genetic
QTL in a way that QTL can be directly controlled in model in Equation 1 is expressed in matrix notation as
the model to further improve QTL mapping. In this Equation 2 (Scheme 1). In Equation 2, the column
article, a new QTL mapping method named multiple vector G contains the genotypic values of the 2m possible
interval mapping (MIM) was developed. MIM uses mul- genotypes. The subscripts of G (1 or 0) denote the
tiple marker intervals simultaneously to construct multi- homozygote or heterozygote of the QTL in the order
ple putative QTL in the model for QTL mapping. There- of the first, second, third, · · ·, and mth QTL, respec-
fore, when compared with the current methods such as tively. The first m columns in the genetic design matrix
IM and CIM, MIM tends to be more powerful and pre- D are the coefficients associated with the main effects
cise in detecting QTL as shown by the example in this of the m QTL, and the last m(m 2 1)/2 columns repre-
article. In addition, MIM can readily search for and sent the coefficients of the epistatic effects among them.
analyze epistatic QTL and estimate the individual geno- Vector E contains the QTL main and epistatic effects.
typic value and the heritabilities of quantitative traits. If there is no epistasis between some QTL, some of
On the basis of the MIM result, genetic variance com- the columns for epistasis should be dropped out from
ponents contributed by individual QTL were also es- matrix D. If higher-order epistasis is considered, the
timated, and marker-assisted selection can be per- dimension of matrix D is easy to expand accordingly.
formed. The matrix D plays an important role in estimation of

genetic parameters in the MIM model.
GENETIC MODEL

Consider m QTL, Q 1, Q 2, · · ·, and Qm, in a backcross
STATISTICAL MODEL OF MIM

population in which there are two genotypes, Q jQ j and
Multiple interval mapping: Assume m QTL, Q 1, Q 2,Q jq j, each with one-half frequency for a QTL, say Q j. For

· · ·, and Qm, located at positions p1, p2, · · ·, pm inm QTL, there are 2m possible different QTL genotypes in
m different marker intervals, I1, I2, · · ·, Im, along thethe population. Cockerham’s genetic model (C-H. Kao
genome, control a quantitative trait y. Among the mand Z-B. Zeng, unpublished results) is used to define
QTL, some may show epistasis and some may not. Thethe genetic parameters and model the relation between

the genotypic value and the genetic parameters. If only quantitative trait value for an individual, i, can be related

Scheme 1
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to the m putative QTL by the model flanking marker genotypes, can be found in Table 1 of
Kao and Zeng (1997). To infer the joint conditional

yi 5 m 1 o
m

j51

ajx*
ij 1 o

m

j?k
djk(wjkx*

ijx*
ik) 1 εi, (3) probability of the genotype of the m putative QTL, we

use the property that if there is no crossing-over interfer-
where m is the mean, x*

ij is the coded variable for the ence, the conditional distributions of the individual pu-
genotype of Qj, aj and wjk have the same definitions as tative QTL genotypes, given the flanking marker geno-
those in the genetic model in Equation 1, djk is an indica- types, are independent. That is,
tor variable for epistasis between Qj and Qk, and εi is
assumed to follow N(0, s2). Indicator variable djk takes prob(Q1, Q2, · · ·,Qm | I1, I2, · · ·, Im) 5p

m

i51

prob(Qi | Ii).
value one if Qj and Qk interact; otherwise its value is
zero. In this model, the first summation is for the main The joint conditional probability of the m QTL is the
effects of the m QTL, the second summation is for their product of the marginal conditional probabilities of
possible epistasis, and εi is the environmental deviation. individual QTL. We refer to pij, j 5 1, 2, · · ·, 2m, as the
This is termed the MIM model because multiple (m) conditional probabilities of 2m possible QTL genotypes
marker intervals are simultaneously used to construct (note that pj’s denote QTL positions and pij’s denote
multiple (m) putative QTL in the model for QTL map- the conditional probabilities). If multiple putative QTL
ping. If QTL genotypes are known, the model tells that within a single marker interval are considered, the indi-
the quantitative trait value is the sum of the QTL main vidual and joint conditional probabilities of QTL geno-
effects, their possible epistatic effects, and environmen- types can be also inferred directly or by a Markov chain
tal deviation, and the MIM model is a regression model. procedure (Jiang and Zeng 1997) assuming no interfer-
However, the putative QTL genotypes denoted by x*

ij’s ence.
are usually not observed because QTL could be located Given a sample with size n, the likelihood function
in the intervals. Given observed flanking marker geno- of the MIM model for u 5 (p1, p2, · · ·, pm, a1, · · ·, am,
types, the conditional distributions of QTL genotypes, · · ·, wjk, · · ·, s2) is
x*

ij’s, for QTL at specific positions, pj’s, can be inferred
based on Haldane’s mapping function (Haldane 1919) L(u | Y, X) 5 p

n

i51
3o

2m

j51

pij φ(
yi 2 mij

s
)4, (4)

assuming no crossover interference (Table 1 in Kao
and Zeng 1997), and the MIM model is then a normal

where φ(·) is a standard normal probability density func-mixture model. For each Qj, its conditional probabilities
tion, mij’s correspond to the genotypic values of the 2m

are extracted to form a matrix Qj (note that Q denotes
different QTL genotypes in Equation 1, and pij’s con-QTL and Q denotes the conditional probability matrix;
taining information on QTL positions are the corre-see Kao and Zeng 1997). The conditional probability
sponding joint conditional probabilities. Statistically,matrices, Qj’s, j 5 1, 2, · · ·, m, play an important role
this is a normal mixture model. The density of eachin estimation of the QTL positions in the intervals.
individual is a mixture of 2m possible normal densitiesThe MIM model is a multiple QTL model and its
with different means mij’s and mixing proportions pij’s.likelihood is a finite normal mixture. There are two
To obtain the MLEs and the asymptotic variance-covari-problems that need to be solved for the MIM model.
ance matrix of the model, the general formulas of KaoThe first is that of parameter estimation of the finite
and Zeng (1997), based on the expectation and maximi-normal mixture model. As m becomes large, the deriva-
zation (EM) algorithm (Dempster et al. 1977), are usedtion of the maximum-likelihood estimates (MLEs) of
for parameter estimation.the QTL effects and positions in estimation quickly be-

comes unwieldy. To handle the estimation problem, the
general formulas derived by Kao and Zeng (1997) are

PARAMETER ESTIMATIONused to obtain the MLEs in parameter estimation.
The second problem is how to find QTL to fit into The likelihood of the MIM model is a finite normal
the MIM model. To select QTL for the MIM model, mixture. In parameter estimation, the finite normal
a stepwise model selection procedure is proposed in mixture model can be treated as an incomplete-data prob-
strategy of qtl mapping. lem (Little and Rubin 1987) by regarding the trait

and markers as observed data and the QTL as missing
data. The EM algorithm can be used for obtaining the

LIKELIHOOD OF THE MIM MODEL
MLEs of the genetic parameters, and Louis’s (1982)
method can be implemented to obtain the variance-In the MIM model, the genotype of each putative
covariance matrix.QTL, Qj in interval Ij, is not observed, but its distribution

In the MIM model, when only one putative QTL (m 5can be inferred from the flanking markers of Ij based
1) is considered in a backcross population, the likeli-on the recombination frequency between them. For
hood is a mixture of two normals (like IM and CIM), andevery QTL in the backcross population, the conditional

probabilities of the QTL genotypes, given different four parameters need to be estimated. The derivation of
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the MLEs for the one putative QTL model using the E step: Update the posterior probabilities of the 2m

possible QTL genotypes for each individual i,EM algorithm has been provided (Carbonell et al.
1992; Zeng 1994). When arbitrary m putative QTL are

pij
(t11) 5

pij φ((yi 2 mij
(t))/s(t))

o2m
j51pij φ((yi 2 mij

(t))/s(t))
;considered, the likelihood is a mixture of 2m normals,

and at least 2m 1 2 parameters (including mean m,
QTL positions and effects, environment variance, and i 5 1, 2, · · ·, n, j 5 1, 2, · · ·, 2m. (5)
epistasis) need to be estimated. The number of mixture

M step: Find u(t 1 1), which satisfies the solutionscomponents and parameters increases dramatically as
the number of putative QTL taken into account in the E(t11) 5 r(t) 2 M(t)E(t) (6)
model increases. Taking m 5 10 as an example, the
likelihood is a mixture of 1024 normals with more than m(t11) 5

1
n

19[Y 2 P(t)DE(t11)] (7)
22 parameters to estimate. Therefore, one of the main
difficulties with the MIM model is that the derivation

s2(t11) 5
1
n

[(Y 2 1m(t11))9(Y 2 1m(t11))of the MLEs quickly becomes unwieldy if the number
of putative QTL is large, and an efficient and systematic

2 2(Y 2 1m(t11))9P(t)DE(t11)
method for parameter estimation of the MIM model is
needed to avoid rederivation for each m. Here, we use 1 E9(t11)V(t)E(t11)], (8)
the general formulas provided by Kao and Zeng (1997)

where P 5 {pij}n32m, V 5 {19P(Di#Dj)}k3k, r 5 {(Y 2for deriving the MLEs and the asymptotic variance-
Xb)9PDi/19P(Di#Di)}k31, and M 5 {19P(Di#Dj)/covariance matrix of the parameters as the estimation
19P(Di#Di) 3 d(i ? j)}k3k. Di(Dj) is the ith( j th) columnmethod of MIM. The general formulas are based on
of the genetic design matrix D. The notation d(i ? j)two matrices, D and Q. The matrix D is the genetic
is an indicator variable that takes value 1 if i ? j, anddesign matrix that characterizes the genetic parameters
0 otherwise, and # denotes Hadamard product, whichof the QTL effects, and the matrix Q is the conditional
is the element-by-element product of corresponding ele-probability matrix that contains the information on
ments of two same order matrices. For more detailedQTL positions. Given the two matrices, the MLEs and
procedures of the derivation see Kao and Zeng (1997).the asymptotic variance-covariance matrix can be sys-
The E and M steps are iterated until a convergent crite-tematically obtained.
rion is satisfied. The converged values are the MLEs.To apply the general formulas to MIM, the genetic
The asymptotic variance-covariance matrix can also be

design matrix D of the MIM model has the same first
obtained using the general formulas. The general for-

m columns as those in Equation 2 for indicating the m mulas can be easily applied to obtaining the MLEs and
main QTL effects and has some or none of the last evaluating the likelihoods for different genetic models
m(m 2 1)/2 columns for specifying epistasis. We refer and population structures by setting up the correspond-
to D as a 2m 3 k matrix, where k is the column dimension. ing genetic design matrix D and conditional QTL geno-
There are m individual conditional probability matrices, type probability matrices Qj’s. Through comparisons of
Q1, Q2, · · ·, and Qm for the m QTL. The components the likelihoods, hypotheses about the parameters of
of the conditional probability matrix Qj of QTL Q j in QTL can be tested by the LRT.
the interval Ij with flanking markers Mj and Nj can be
found in Table 1 of Kao and Zeng (1997). For each

STRATEGY OF QTL MAPPINGinterval, there are four possible flanking marker geno-
types. Totally, there are 4m possible flanking marker For the MIM approach, the second problem that
genotypes for m intervals. The joint conditional proba- needs to be considered is how to search for QTL to fit
bility matrix Q then has dimension 4m 3 2m and can be into the MIM model. It is quite common that genetic
obtained by Q 5 Q1 ^ Q2 ^ · · · ^ Qm, where ^ denotes marker data, e.g., rice (Li et al. 1997), pine (Aitkin et
the Kronecker product. The 2m mixing proportions of al. 1997), and eucalyptus (Grattapaglia et al. 1996),
any individual i, pij’s, can be found to be one of the 4m

contain more than 100 markers in several linkage
rows in Q according to its flanking marker genotype. groups to cover most of the genome. A QTL is poten-
Given the matrices D and Q, the MLEs and the asymp- tially located in any position of each interval. To detect
totic variance-covariance matrix can be readily obtained QTL using the MIM model, model selection procedures
by the general formulas. are considered because all possible subset selection is

Note that, at the tested positions p1, p2, · · ·, and pm, not feasible. There are at least three basic model selec-
the mixing proportions pij’s in the likelihood are fixed tion techniques, forward, backward, and stepwise se-
and need not be estimated. For obtaining the MLEs lections, for exploring the relationship between the
of mean, environmental variance, and marginal and independent and dependent variables (Draper and
epistatic effects, the general equations formulate the Smith 1981; Kleinbaum et al. 1988; Miller 1990). Sev-

eral selection criteria, such as Akaike information crite-iteration of the (t 1 1) EM step as follows:
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rion (AIC; Akaike 1974), cross-validation (Stone 1974), of QTL can be added or deleted together. The testing
hypotheses for adding or deleting one additional QTLpredictive sample reuse (Geisser 1975), Baysian infor-

mation criterion (BIC; Schwarz 1978), minimum pos- Qi are
terior predictive loss (Gelfand and Ghosh 1998), or

H0: ai 5 0LRT statistic for selection of variables can be incorpo-
rated with model selection techniques to determine the H1: ai ? 0, (9)
final model. In QTL mapping, any criterion used has

given other, say, k QTL in the model. In hypotheses 9,to take the genetic marker data structure, such as ge-
ai denotes the effect of Qi. A LRT statisticnome size and distribution of markers, into account.

There have been studies on the connection of the LRT
LRT 5 22 log

L 0

L1
statistic to the data structure (see below). So far, how-
ever, these related studies lack other criteria. The step-
wise selection technique with the LRT statistic as a crite- is used for testing the hypotheses, where L0 and L1 are

the likelihoods of the MIM models with k and k 1 1 QTL,rion is adopted for identifying QTL here.
Critical value for claiming QTL detection: When us- respectively. If a group of QTL is tested, the hypothesis

testing would contain several QTL effects. The stepwiseing the LRT statistic as a criterion in model selection
for QTL detection, it is very important to determine model selection procedure proceeds as follows:

Step 1: Significant values for entry (SVE) and stayingthe appropriate critical value for claiming QTL detec-
tion such that correct statistical inference about QTL (SVS) of a LRT statistic are specified for adding and

dropping a QTL in the MIM model. Note that SVE andparameters can be made. Lander and Botstein (1989)
suggested using the Bonferroni argument for the sparse- SVS could be different in model selection.

Step 2: For each position on the genome covered bymap case and Orenstein-Uhlenbeck diffusion for the
dense-map case to determine the critical value. Gener- markers, the LRT statistic reflecting the contribution

of the putative QTL to quantitative trait variation isally, it has been pointed out that the critical value might
need to be adjusted for the number and size of interval, calculated (m 5 1; IM). If there are positions with LRT

statistics larger than SVE, the position with the largestdifferent levels of heritability, different number of multi-
ple linked or unlinked QTL, and linked QTL in the value will be selected and added first in the model.

When m 5 1, it is important to note the shape of thesame or opposite direction of effects (Lander and
Botstein 1989; Jansen 1993; Zeng 1994). Visscher likelihood profile and the direction of effect change

along the genome for further mapping. Note that quiteand Haley (1996) suggested that the critical value
should be reduced after a QTL of large effect has been often no position is found with the LRT statistic larger

than SVE when m 5 1 because individual QTL contrib-detected. However, most of this information is not avail-
able before mapping, and consequently the answers ute little to the trait variation. Two alternative ap-

proaches are proposed to prevent the procedure fromto most of the above questions remain unknown.
Churchill and Doerge (1994) therefore suggested stopping at a very early stage.

First, when m 5 1, the position with the highest LRTusing a permutation test for determining an appropriate
critical value for specific data sets. statistic is automatically included in the model to initiate

the procedure. In our experience, when only one QTLThe above considerations on critical value are for the
single-QTL model. For a multiple-QTL model, a model is considered in the model (m 5 1), it is quite often

found that the LRT statistic of a QTL could be less thanselection procedure is required to determine the final
model. If stepwise selection is used, the final model SVE. But, when multiple QTL (if any) are accumulated

in the model (m . 1), the partial LRT statistics of indi-is selected from a sequence of nested tests, and the
significance level of the sequence will depend on the vidual QTL might become significant because more ge-

netic variation is removed from residual variation byunknown true model (Atkinson 1980; Terasvirta and
Mellin 1986). Therefore, the critical value of the multi- taking multiple QTL into account.

Second, chunkwise selection (Kleinbaum et al. 1988)ple-QTL model depends not only on the above consider-
ations but also on the unknown true model, and the can be used. For closely linked QTL with opposite ef-

fects, more than one QTL may be selected in the modelchoice of critical value for claiming QTL detection be-
comes even more complicated for MIM. We are not as a chunk to effectively reduce the genetic residue in

the model. If only one of them is selected, its contribu-sure currently what the appropriate critical value is for
the MIM model. In practice, the critical value from IM tion may not be significant because the effect is canceled

out due to failure to consider the others. When m 5 1or CIM based on the Bonferroni argument may be used
until the complicated issue of choosing the significance in the MIM model, the chromosome region with signifi-

cant change in the directions of effect could suggestlevel for the multiple-QTL model is solved.
Stepwise selection procedure: The stepwise selection that linked QTL with opposite effects are present. Also,

epistatic QTL can constitute a chunk. If QTL interact,begins with no QTL (m 5 0). QTL are then added or
deleted one by one in the model. Alternatively, a group they may not be significant if only one of them is consid-
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ered, but they could be significant if they are considered mum, and the model is not the final model. To obtain
the MLEs of the positions and effects, a multidimen-together. Note that the critical value should be higher

for chunkwise selection because more parameters are sional search around the regions of the identified QTL
is suggested. By doing this, QTL estimates can be finetested. Chunkwise selection allows the incorporation of

prior knowledge and preference into the model selec- tuned and the final model can be determined. With
estimates of QTL positions and effects, other compositetion procedure.

Step 3: After the first k QTL are added to the model, genetic parameters (e.g., heritability and variance com-
ponents) of a quantitative trait can be estimated andthe MIM model with m 5 k 1 1 QTL is considered. The

position that produces the most significant partial LRT response to selection can be predicted.
Construction of the confidence interval for QTL posi-statistic at the SVE level is added into the model. After

the k 1 1 QTL are fitted to the model, stepwise selection tions and effects: It is important to construct the confi-
dence interval (C.I.) for QTL effects and positions. Forchecks all the QTL and deletes any QTL that does not

produce a significant partial LRT statistic at the SVS example, when a particular QTL is to be transferred to
a recipient, a C.I. of QTL position estimate can givelevel. Note that a QTL that enters at an early stage may

become superfluous at a later stage in stepwise selection us an idea about how large a chromosome segment is
around the detected position to be transferred. Thereprocedure. By the same argument, chunkwise selection

(m 5 k 1 l, l . 1) can be implemented. The stepwise are several approaches to constructing a C.I. of the QTL
positions and effects, including lod support intervalprocess ends when none of the other positions has a

partial LRT statistic significant at the SVE level. (Lander and Botstein 1989), bootstrapping, using
asymptotic standard deviation (ASD; Darvasi et al.Separating linked QTL: The evidence of multiple-

linked QTL clustering in a region could be suggested 1993; Kao and Zeng 1997), and the methods by Dupuis
and Siegmund (1999). Darvasi et al. (1993) and Kaoby the shape of the likelihood profile, for example, a

likelihood profile with a wide range of significant multi- and Zeng (1997) suggested using (p̂ 2 Z(12a/2)Sp̂, p̂ 1
Z(12a/2)Sp̂), where p̂ and Sp̂ are the estimates of QTLple peaks, or by significant change in the direction of

estimated QTL effects on a chromosome region. To position and its standard deviation, to construct a C.I.
separate closely linked QTL in a certain chromosome Estimation of variance components and heritability:
region, we can compare the likelihood of the multiple- When the final model is determined, the variance com-
QTL model with that of a single-QTL model in this ponents and the heritability of the quantitative trait can
region for separation. be estimated. The ratio VG/Vp, denoted by h2

b, is called
Analyses of epistasis: For a backcross population, it the heritability of a quantitative trait in the broad sense,

can be shown that if epistasis is present and ignored in where VG and Vp are the genetic and phenotypic vari-
mapping, the estimates of main effects of epistatic QTL ances. The genetic variance VG can be estimated by the
are asymptotically unbiased whether epistasis between sum of squares of the final model, and the phenotypic
QTL is considered in the model or not, and the power variance Vp can be estimated by the total sum of squares.

The estimate of h2
b can be approximated by the coeffi-of the test for detecting epistatic QTL could be low

cient of determination R 2 of the MIM model(appendix). Therefore, when mapping QTL without
considering epistasis in a backcross population, the posi-
tions and effects of the identified QTL could still be ĥ2

b 5
V̂G

V̂p

5
Model sum of squares
Total sum of squares

5 R 2.
unbiased. For l QTL being tested, there are k 5 l(l 2
1)/2 possible digenic epistases. For each pair of QTL To estimate the genetic variance components, for
Qi and Qj, the hypotheses for testing their epistatic effect example, the total genetic variance contributed by m
wij are QTL in the backcross population by Equation 1 is

H0: wij 5 0
VG 5 o

m

i51

a2
i

4
1 2o

m

i,j

Dijaiaj 1 o
m

i,j

dij 1 1
16

2 D 2
ij2w 2

ij, (11)
H1: wij ? 0, (10)

given the l QTL in the MIM model. Again, the LRT is where Dij is the gametic linkage disequilibrium coeffi-
cient between Qi and Qj (Weir 1996). The coefficientused to test the hypotheses. The hypotheses in Equation

10 can also be used to identify QTL with no main effect Dij is equivalent to (1 2 2rij)/4, where rij is the recombina-
tion fraction between two QTL. In Equation 11, the firstbut interacting with other QTL. To choose the critical

value for epistasis detection, a Bonferroni argument can term is the genetic variance contributed by QTL Qi. The
second term, Dijaiaj, is the genetic covariance betweenbe used. The critical value for rejection of H0 is sug-

gested as x2
1,a/k, where a is the overall significance level. two QTL due to linkage disequilibrium. The last term

is contributed by epistasis. The genetic variance compo-Fine tuning the estimates of QTL positions and ef-
fects: In the above procedures, the estimates of QTL nent contributed by Qi is defined by a2

i /4. However, the
estimated genetic component by â 2

i /4 is biased, and thiseffects and positions were obtained individually. There-
fore, the model likelihood might not be at the maxi- bias can be corrected by [â 2

i 1 Var(âi)]/4. The genetic
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covariance between Qi and Qj is defined by 2Daiaj. By 120 markers in 12 linkage groups and covered z1679.3
cM. The average spacing of the 107 marker intervalsthe same argument, the estimated genetic covariance by

2D̂âiâj is also biased and can be corrected by 2D̂ was 13.5 cM.
As mentioned in strategy of qtl mapping, the[âiâj 1 Cov(âi, âj)] under the assumption that the effect

and location of QTL are independent. Other genetic choice of critical value is a very complicated issue for
the multiple-QTL model. The value depends on thecomponents can also be estimated in the same way.

For an F2 population or a backcross population with marker data structure and several unknown QTL param-
eters (true model). In data analysis, a critical value fromsegregation distortion, the partition of genetic variance

into components is presented by C-H. Kao and Z-B. IM based on Bonferroni argument is used to evaluate
and illustrate the MIM approach. The SVE and SVS ofZeng (unpublished results).

Estimation of individual genotypic value and marker- the LRT statistic for claiming a QTL detection at the
overall a 5 0.05 level were chosen as 12.12 (x2

1,0.05/107 ≈assisted selection: In plant or animal breeding, individu-
als with high genotypic values or favorable genotypes x2

1,0.0005). For QTL selected as a chunk, the overall a 5
0.05 level was chosen as x2

k,0.05/107, where k is the numberare usually selected for producing progeny. With the
estimated QTL effects and positions, the genotypic val- of tested parameters in the chunk.

QTL detection: For trait DBH, when m 5 1, there isues of individuals can be estimated by Equation 1 and
the favorable QTL genotypes can be determined for no position along the genome with an LRT statistic

higher than SVE. The position with the largest LRTselection. To select individuals with large trait values,
genotype AA (Aa) of nonepistatic QTL with positive statistic (7.85; R 2 5 0.0639) was found at position

[12,5,0] (0 cM away from the left marker of the fifth(negative) effects is preferred. For QTL with epistasis,
their epistatic effects must be considered in selecting marker interval on the twelfth linkage group). The chro-

mosome region between C1M3 (the third marker ofthe best combination of genotypes. If QTL controlling
different traits are closely linked or at the same posi- the first linkage group) and C1M7 showed opposite

direction of effects. At C1M3, the effect was positivetions, traits are genetically correlated. Selecting individ-
uals for improvement of one trait will affect the other (P 5 0.57), while at C1M4 and C1M5, the effects were

negative (P 5 0.0253 and 0.4181, respectively). Thetrait due to linkage or pleiotropy. In practice, selecting
individuals with the desired character for one trait will genetic distance between C1M3 and C1M4 is 74.8 cM.

It could suggest that there are two closely linked QTLfrequently accompany an undesired character for other
traits. By considering circumstances such as genetic cor- with opposite directions of effects in this region. If only

one QTL (m 5 1) is fitted in the model for search, therelation between traits, the distances between markers
and QTL, and the effects of QTL, the best strategies of effect can be canceled out by opposing QTL effects.

QTL will be out of detection as shown by the LRTmarker-assisted selection for (multiple) trait improve-
ment under specific purposes and requirements can be statistic profile of IM in Figure 1. Therefore, on linkage

group 1, the MIM model with m 5 2 selected two candi-explored.
date QTL, at positions [1,3,63] and [1,4,0], as a chunk.
The partial LRT statistic for fitting the two QTL in the

DATA ANALYSIS
model was 13.13 (SVE and SVS for two parameters are
x2

2,0.0005 5 15.2), and the model R 2 was 0.2104. AlthoughRadiata pine: Radiata pine is one of the most widely
planted forestry species in the Southern Hemisphere. the LRT statistic was less than SVE, the two QTL were

selected as a chunk to initiate the stepwise selectionTwo elite parents were crossed to produce 134 progeny.
For each progeny, random amplified polymorphic DNA process.

The procedure restarted at m 5 2 by fitting two QTL(RAPD) markers were generated, and traits measured
included annual brown cone number at eight years of with effects of opposite directions at [1,3,63] and

[1,4,0]. The partial LRT statistics were 8.034 and 8.458age, diameter of stem at breast height, and branch qual-
ity score. The cone number per tree, which varied from for the two QTL, with estimated effects 65.65 and

273.48, respectively. Given QTL at [1,3,63] and [1,4,0]0 to 45, was transformed to approximate a normal distri-
bution using a square root transformation. The quality in the model, a QTL at [10,5,12] with partial LRT statis-

tic 12.83 was selected into the model (m 5 3). Theof branches of a tree were scored on a scale from 1
(poorest) to 6 (best). The mean of several branch qual- partial LRT statistics became 14.89, 15.42, and 12.83,

which were all larger than the SVS of 12.12, for theity scores denoted the branch quality of a tree. A pseudo-
testcross strategy is used to construct a linkage map for three QTL. The model R 2 was 0.3202. Given these three

QTL in the model, the largest partial LRT statistic 7.40each parent, and then a backcross model can be used
for mapping QTL for each parent separately (Gratta- was found at position [2,2,0]. A chunkwise selection for

epistatic QTL was attempted. If the candidate QTL atpaglia and Sederoff 1994; Grattapaglia et al. 1996).
The analysis reported here is on one parent. A genetic [2,2,0] and [12,5,12] with epistasis were selected as a

chunk (m 5 5 and one epistasis, k 5 6), the partial LRTmarker map was constructed using MapMaker/EXP
(Lincoln et al. 1993). The RAPD marker data contained statistic of the chunk would be 24.76 (compared with
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TABLE 1

Summary of QTL detected by MIM in Radiata pine

Quantitative trait loci

Cone number Tree diameter Branch score
Linkage
group Position Effect LRT Position Effect LRT Position Effect LRT

1 [1, 1, 3]a 20.5745 9.64 [1, 3, 61] 81.05 24.00 [1, 4, 11] 0.5273 10.37
(4.60)b (0.1796) (1.96) (8.48) (7.49) (0.1734)

([1, 1, 0], [1, 2, 3])c ([1, 3, 48], [1, 3, 66]) ([1, 3, 47], [1, 5, 7])
[1, 4, 0] 292.99 24.00

NA (8.89)
([1, 4, 0], [1, 4, 1])

2 [2, 6, 0]d 0.5228 14.85 [2, 2, 0]f 14.71 25.91 [2, 1, 0] 20.4597 15.62
NA (0.1965) NA (4.49) NA (0.1647)

([2, 5, 1], [2, 6, 10]) ([2, 1, 2], [2, 2, 9]) ([2, 1, 0], [2, 2, 7])
5 [5, 10, 0]d,e 0.4537 23.77 [5, 5, 0]g 7.16 9.48

NA 0.1756 NA (4.46)
([5, 8, 1], [5, 10, 7]) ([5, 4, 7], [5, 5, 16])

6 [6, 4, 18] 0.8505 15.71
(1.63) (0.1719)

([6, 3, 7], [6, 5, 5])
10 [10, 5, 7] 1.2679 24.56 [10, 5, 9]g 15.92 18.90

(1.01) (0.2361) NA (4.70)
([10, 4, 46], [10, 5, 14]) ([10, 4, 34], [10, 6, 4])

[10, 9, 0] 20.9656 25.06
NA (0.2230)

([10, 8, 2], [10, 9, 10])
11 [11, 4, 21] 21.3144 27.39

(1.95) (0.2317)
([11, 4, 8.5], [11, 4, 25])

[11, 6, 0] 1.1122 20.47
NA (0.2361)

([11, 5, 8], [11, 5, 12]
12 [12, 3, 2]e 20.8178 25.03 [12, 5, 9]f 28.41 17.90 [12, 5, 0] 0.5085 10.36

(1.76) (0.1874) NA (4.49) NA (0.1597)
([12, 2, 6], [12, 3, 6]) ([12, 4, 1], [12, 6, 3]) ([12, 2, 8]), [12, 5, 11])

NA, not available.
a [1, 1, 3] denotes the QTL at 3 cM away from the left marker of the first interval on linkage group 1.
b Asymptotic standard deviation.
c Lod support interval. ([1, 1, 0], [1, 2, 3]) denotes the interval with lower bound at [1, 1, 0] and upper bound at [1, 2, 3].
d QTL interact with epistatic effect 20.9783 (LRT 5 10.22).
e QTL interact with epistatic effect 21.0800 (LRT 5 4.48).
f QTL interact with epistatic effect 39.54 (LRT 5 15.23).
g QTL interact with epistatic effect 22.64 (LRT 5 4.84).
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Figure 1.—Results of QTL
mapping. (a–e) The solid trian-
gles denote the QTL positions lo-
calized by MIM. The size of trian-
gle reflects the size of QTL effect.

x2
3,0.0005 5 17.73). The partial LRT statistics were 23.48, and 26.91 for QTL at positions [1,3,63], [1,4,0], and

the first chunk of QTL, respectively. Given the six QTL,24.39, and 8.76 for the three preselected QTL at
[1,3,63], [1,4,0], and [10,5,12], respectively. The QTL no other QTL were identified.

Fine tuning the estimates of QTL position and effect:at [10,5,12] became nonsignificant and, therefore, was
dropped from the model. Given the four QTL [1,3,63], Two epistatic pairs were identified as described above;

no other epistatic interaction between QTL was found.[1,4,0], [2,2,0], and [12,5,12] in the MIM model, no
other single position had a partial LRT statistic .8.76. No QTL without main effect but interacting with the

identified QTL were found. A multidimensional searchThe chunkwise selection was implemented again to find
epistatic QTL. When the candidate QTL at [5,5,0] and around the detected QTL was used to fine tune the

estimates of QTL parameters. The locations changed to[10,5,12] with epistasis were considered as the third
chunk, the partial LRT statistic was 19.85. Adding these [1,3,61], [1,4,0], [2,2,0], [5,5,0], [10,5,9], and [12,5,9].

The estimated QTL effects are shown in Table 1. QTLtwo epistatic QTL into the model (m 5 6 and two epista-
sis, k 5 8), the partial LRT statistics were 19.48, 20.69, at positions [1,3,61], [2,2,0], [10,5,9], and [5,5,0] had
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positive effects, and QTL at positions [1,4,0] and the genetic variance. The other five QTL contributed
z55.93% of the total genetic variance. Epistasis contrib-[12,5,9] had negative effects. The effects of QTL at

positions [1,3,61] and [1,4,0] were larger when com- uted 14.14%. For branch quality, five QTL were identi-
fied (we also considered the two QTL with partial LRTpared with others. The model R 2 was 0.5226. Therefore,

six identified QTL were conclusively identified in QTL statistic values 10.37 and 10.36 at [1,4,11] and [12,5,0]
as candidate QTL). No epistasis was found for QTLmapping for the diameter trait. The partial LRT statistic

profiles for each QTL are shown in Figure 1. controlling branch score. The model R 2 was 0.3630.
Two linked QTL, separated by 19.6 cM on linkage groupEpistasis: The estimated epistatic effect between QTL
11, contributed 48.69% of the genetic variance. Theat positions [2,2,0] and [12,5,9] was 39.54 (partial LRT
remaining three QTL contributed from z11 to 27% ofstatistic 15.23), and the epistatic effect between QTL at
the total genetic variance.[5,5,0] and [10,5,9] was 22.64 (partial LRT statistic

Confidence intervals of QTL positions and effects:4.84). Figure 2 shows how the QTL interact. Figure 2a
The lod support interval and the ASD of QTL effectshows that the effect of QTL (GBB 2 GBb) at position
and position are listed in Table 1. Out of the 18 QTL[12,5,9] was positive in the background of homozygote
detected for three traits, 9 ([2,6,0], [5,10,0], andQTL (AA) at position [2,2,0], but it was negative in the
[10,9,0] for cone number; [1,4,0], [2,2,0], and [5,5,0]heterozygote background (Aa). Figure 2b shows that
for tree diameter; [2,1,0], [11,6,0], and [12,5,0] forthe QTL at position [10,5,9] had a large effect in the
branch score) of them were localized at the markers,background of homozygote QTL (AA) at [5,5,0], but it
and 2 ([10,5,9] and [12,5,9]) had negative ASD. There-had a small effect in the heterozygote background (Aa).
fore, the ASD of these QTL position estimates were notHeritability and variance components: The broad
available for constructing C.I.’s. The asymmetric lodsense heritability for tree diameter can be estimated by
support intervals are typical in this case. For example,the R 2 value of the final MIM model. The R 2 of the
the diameter QTL at [5,5,0] has an asymmetric lodmodel including six QTL and two epistases was 0.5226.
support interval ([5,4,7], [5,5,16]). In general, the inter-QTL at positions [2,2,0], [5,5,0], [10,5,12], and [12,5,9]
val constructed by ASD is much narrower than the lodcontributed z4.50, 1.36, 5.25, and 1.76% of the total
support interval. For example, C.I.’s constructed usinggenetic variance, respectively. The percentage of ge-
four times ASD were 6.52 and 7.04 cM for the conenetic variance contributed by the two linked QTL sepa-
QTL at [6,4,18] and [12,3,2], and the lod support inter-rated by 13.8 cM on the first linkage group was 76.75%.
vals are 59.6 cM and 14.6 cM, respectively.There was a negative genetic covariance between the two

Marker-assisted selection: Individuals with favorablelinked QTL. Two epistatic pairs contributed z10.38% to
QTL genotypes are selected as parents to produce prog-the total genetic variance.
eny. Trees carrying all the favorable QTL genotypesQTL mapping for cone number and branch quality:
were not found for each trait in the sample. Therefore,QTL mapping was also performed on the traits of cone
only a subset of the detected QTL was considered innumber and branch score. The mapping results are
selection. For tree diameter, three trees were found tolisted in Table 1. For cone number, seven QTL were
carry favorable genotypes and two trees were found toidentified (although the QTL at [1,1,3] was not signifi-
carry unfavorable genotypes (consider epistasis) of thecant with partial LRT statistic 9.44, we considered it as
five QTL (out of the six detected QTL) at positionsa candidate QTL). Epistasis was found between two QTL
[1,4,0], [2,2,0], [5,5,0], [10,5,9], and [12,5,9]. The ob-pairs using chunkwise selection. The model R 2 value
served trait means for the two groups were 232.38 andof the MIM model fitted to the seven QTL and their
163.05 mm, respectively, through selection of these fiveepistasis was 0.5606. The two linked QTL, separated by
diameter QTL. The estimated genotypic values of the27.6 cM on linkage group 10, contributed 29.93% of
two groups were 233.84 and 160.06 mm (Table 2). The
observed and estimated values of performing selection
for the other two traits on the sample based on four
and five QTL are also shown in Table 2. The mapping
results in Table 1 also allow us to estimate the genotypic
values of certain genotypes. For example, if trees car-
rying all six favorable diameter QTL were selected with
epistasis taken into consideration, the estimated tree
diameter for those trees would be 314.17 mm and the
estimated cone number would be 8.22. If trees carry all

Figure 2.—Epistasis between QTL controlling tree diame- seven favorable QTL (epistasis considered) for reducing
ter. (a) Epistasis between QTL at positions [2,2,0] and cone number, the estimated cone number would be
[12,5,9]. A and B denote QTL at [2,2,0] and [12,5,9], respec-

0.33 and the estimated tree diameter would be 196.45tively. (b) Epistasis between QTL at positions [5,5,0] and
mm. Consequently, the improvement of tree diameter[10,5,9]. A and B denote QTL at [5,5,0] and [10,5,9], respec-

tively. would cause simultaneous increase in cone number,
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TABLE 2

Comparison of the predicted and observed means of the selected populations

No. of QTL

Subpopulation

Select decrease Select increase Unselected population

Trait Detected Applied Observed Predicted Observed Predicted Observed Predicted

CNa 7 4b 0.83 0.90 13.61 17.03 9.93 7.83
(0.43) (·) (8.29)

DBHc 6 5d 163.05 160.06g 232.38 233.84g 197.75 197.68
(35.64) (20.00) (34.49)

BSe 5 3f 1.24 2.20 5.01 5.13 3.70 3.66
(·) (0.82) (1.07)

CN, DBH, and BS denote cone number, diameter, and branch score, respectively. Numbers in parentheses
are standard deviations.

a Numbers of individual trees are 3, 1, and 113 in the three subpopulations.
b Select cone QTL at [2, 6, 0], [5, 10, 0], [10, 5, 7], and [10, 9, 0].
c Numbers of individuals are 2, 3, and 129 in the three populations.
d Select diameter QTL at [1, 4, 0], [2, 2, 0], [5, 5, 0], [10, 5, 9], and [12, 5, 9].
e Numbers of individuals are 1, 5, and 128 in the three populations.
f Select branch score QTL at [11, 4, 21], [11, 6, 0], and [12, 5, 0].
g Assume that the QTL at [1, 3, 61] and [1, 4, 0] have coupling phase.

which is a reflection of the positive genetic correlation table in maximization as the number of QTL fitted into
the model increases (Haley and Knott 1992; Satago-between the two traits. Generally, the estimated and

observed results were quite close based on the MIM pan et al. 1996). We used the method of maximum
likelihood in estimation by applying the general formu-result as found in this sample.
las of Kao and Zeng (1997) to maximize likelihood and
obtain MLEs as well as the variance-covariance matrix

DISCUSSION of the MLEs. The MLEs have some attractive properties,
such as invariance, consistency, and asymptomatic effi-A new QTL mapping approach named MIM is pro-
ciency, in statistical inference. If prior information ofposed. It uses multiple-marker intervals simultaneously
parameters is available, the Bayesian approach, such asto construct multiple QTL in the model for QTL map-
in Satagopan et al. (1996) and Sillanpaa andping. The MIM model is based on Cockerham’s model
Arjas (1998), can be used to incorporate the prior(C-H. Kao and Z-B. Zeng, unpublished results) for de-
information in estimation. By specifying prior densityfining genetic parameters and on the general formulas
of parameters, they used Markov chain Monte Carlo toof Kao and Zeng (1997) for statistical estimation. Using
evaluate the posterior density and to output empiricalthe MIM model, stepwise and chunkwise selections with
distribution of QTL parameters for QTL mapping. Thethe LRT statistic as a selection criterion are proposed
MIM approach of using the multiple-QTL model into identify QTL, to separate linked QTL, and to analyze
QTL mapping distinguishes itself from the current ap-epistasis between QTL. The asymptotic standard devia-
proaches, such as IM and CIM, by the ability to usetions of the estimated QTL positions and effects can be
multiple-marker intervals simultaneously to search theobtained for constructing the C.I.s. With the estimated
chromosome region between markers for QTL. As aQTL effects and positions provided by MIM, the vari-
result, the MIM method may provide greater powerance components of QTL, the heritability of a quantita-
and precision for QTL mapping. However, it should betive trait, and the genotypic values of individuals can be
noted that the significance level of the multiple-QTLestimated, and marker-assisted selection can be per-
model depends on the marker data structure and theformed for trait improvement. Experimental data on
unknown true model, and the critical value for claimingthree traits on radiata pine were analyzed to illustrate
QTL detection becomes a complicated issue for MIMthe potential power and benefit of MIM in comparison
(see strategy of qtl mapping). In the example, wewith the current methods, such as IM and CIM. While
used an ad hoc critical value. This value is appropriatea backcross MIM model was used here as an example,
for the one-QTL model, but it may not be appropriatethe MIM model can be easily extended to an F2 popula-
for MIM. Although the MIM method claims more QTLtion (C-H. Kao and Z-B. Zeng, unpublished results).
detection than the current methods in data analysis, itThe MIM model is a multiple-QTL model. When the
is not appropriate to conclude that the MIM method ismultiple-QTL model is considered, the likelihood is a

finite normal mixture and becomes increasingly intrac- better until the complicated problem of assessing the



1214 C-H. Kao, Z-B. Zeng and R. D. Teasdale

appropriate critical value for the multiple-QTL model epistasis into account without causing a problem in the
backcross population. For tree diameter and cone num-has been solved.

Under the ad hoc critical value, MIM detected six QTL ber, respectively, epistasis contributed 10.38 and 14.14%
of the total genetic variance. Therefore, epistasis shouldfor tree diameter and CIM detected only two of them

on the first linkage group in this example. IM failed to be generally considered in searching for QTL and
marker-assisted selection. For example, in Figure 2a,detect any QTL (Figure 1). The major reason for this

difference is that CIM is not capable of controlling the the best combination of QTL genotype at positions
[2,2,0] and [12,5,9] was AABB, which had an estimatedtwo detected linked QTL simultaneously in further map-

ping. As a result, only the QTL at position [1,4,0] is genotypic value of 13.2. If epistasis was ignored, geno-
type AABb, with estimated genotypic value 1.75, wouldcontrolled, but it does not contribute substantially to

reducing the genetic variation because its effect has be selected. The benefit of taking epistasis into account
was reflected in the mapping result in Table 1 and inbeen canceled out by ignoring the linked QTL with

opposite effects at position [1,3,61]. Accordingly, most grouping genotypes in Table 2.
It has been 76 yr since Sax (1923) associated seedof the genetic variance (76.75%) contributed by the two

linked QTL becomes part of the genetic residue, making coat characters with seed size in beans. The QTL map-
ping model has evolved from using marker analyses,the other four QTL undetectable. This shows the beauty

of MIM, which allows the current detected QTL being e.g., t -test, simple or multiple regression, to one-QTL
model (IM and CIM), and further to the multiple-QTLfitted directly into the model to search for the next

QTL. Consequently, more QTL were detected by MIM model, such as the MIM approach. In practice, the de-
tected QTL will be used for selecting parents with de-than the current methods in this example.

In the data analyses, MIM localized two linked QTL sired genotypes for producing progeny or gene transfer
to achieve the ultimate goal of trait improvement inwith large opposite directions of effect in the third inter-

val of linkage group 1 (Figure 1a). They contributed later generations. QTL have to be mapped as precisely
as possible to ensure good quality of the follow-up opera-76.75% of the total genetic variance. The size of this

interval was 74.8 cM, so it is suggested that more markers tion on QTL. Therefore, precision and unbiasedness
in estimating the parameters of QTL should be moreshould be added to this interval to permit further investi-

gation. Two linked QTL, one controlling diameter and important than the ease of computation and implemen-
tation in QTL mapping. The computation burden ofanother controlling cone number, were detected in the

same fifth interval of linkage group 10 (Table 1). The the multiple-QTL model is heavy when compared with
the one-QTL model. However, the gain of doing so, asestimated locations are 2 cM apart. Further investigation

is needed to check if they are the same (pleiotropic) shown in this article, could be significant. Although
further work is needed to establish a theoretical basisor different (closely linked) QTL. The likelihood profile

of linkage group 12 in Figure 1e is a result of condition- for determining an appropriate criterion of model selec-
tion in QTL mapping under MIM, MIM has the potenti-ing on the other five unlinked QTL. It shows multiple

significant peaks, which could suggest multiple-linked ality to be more powerful and more precise in QTL
mapping by directly conditioning putative QTL and in-QTL on the same linkage group. However, after further

investigating the linkage group, there was no evidence corporating possible epistasis in the model. Thus, more
genetic variation can be controlled in the model. Withof multiple QTL given the peak at position [12,5,9] and

the other five detected QTL. It is therefore concluded the estimates of QTL parameters, other composite ge-
netic parameters, such as the genetic variance compo-that there is only one QTL at position [12,5,9] on link-

age group 12. nents and heritabilities, can also be estimated. In addi-
tion, based on the MIM results, genotypic values ofAnother benefit derived by MIM is that epistasis can

be readily incorporated in the model for analysis or individuals can be estimated to allow desired genotypes
to be selected in marker-assisted selection under varioussearching for epistatic QTL. When taking both main

and epistatic effects into account in searching for QTL, requirements (e.g., cost, efficiency, and trait correla-
tions).the critical value for hypothesis testing needs to be ad-

justed for the extra degree of freedom for epistasis. It An initial version of the MIM program source code
(written in Fortran 77 language) is available on theis interesting to know that the estimated main effects of

linked QTL are asymptotically unbiased in the backcross worldwide web (http://www.stat.sinica.edu.tw/zchkao/).
A more user-friendly package can be developed basedpopulation (appendix), but they are biased in the F2

population if epistasis is present and ignored in map- on this program. Using the MIM program, we imple-
mented stepwise and chunkwise selections with the LRTping (Kao 1995). This is because the coded variables

for main and epistatic effects in Cockerham’s model statistic as a selection criterion to search for QTL in
data analyses. In analyzing the data, we chose the twoare still orthogonal under linkage disequilibrium for

the backcross population but not for the F2 population. linked QTL with opposite direction of effect on the
first linkage as a starting point to initiate the selectionThis asymptotic unbiasedness property ensures that

QTL mapping could first be performed without taking process, and six QTL were found for tree diameter. We
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maternal half-sib family and RAPD markers. Genetics 144: 1205–also tried another possible starting point at [12,5,0] to
1214.

initiate the process and obtained the same final model. Grignola, F. E., I. Hoeschele and B. Tier, 1996a Mapping quanti-
tative trait loci via residual maximum likelihood: II. A simulationThis final model obtained by model selection might
study. Genet. Sel. Evol. 28: 479–490.not be optimal. Even though the optimal model was

Grignola, F. E., I. Hoeschele, Q. Zhang and G. Thaller, 1996b
obtained, there is no guarantee that it is the true model Mapping quantitative trait loci via residual maximum likelihood:

I. Methodology. Genet. Sel. Evol. 28: 491–504.(the estimated QTL are the true QTL) for limited sam-
Hackett, C. A., and J. I. Weller, 1995 Genetic mapping of quantita-ple size. Ultimately, the reliability of the identified QTL

tive trait loci for traits with ordinal distributions. Biometrics 51:
will depend on further experiments to assess the validity 1252–1263.

Haldane, J. B. S., 1919 The combination of linkage values and theof QTL. There is no single criterion that plays the role
calculation of distances between the loci of linked factors. J.of a panacea in the model selection problem. Other
Genet. 8: 299–309.

model selection techniques and criteria could also be Haley, C. S., and S. A. Knott, 1992 A simple regression method
for mapping quantitative trait loci in line crosses using flankingimplemented. It is a very important task to explore and
markers. Heredity 69: 315–324.automate the model selection procedures of the MIM

Hoeschele, I., and P. Vanranden, 1993a Bayesian analysis of link-
approach for general use in the QTL mapping commu- age between genetic markers and quantitative trait loci: I. Prior

knowledge. Theor. Appl. Genet. 85: 953–960.nity.
Hoeschele, I., and P. Vanranden, 1993b Bayesian analysis of link-
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APPENDIX: THE PROBLEMS OF IGNORING
EPISTASIS IN QTL MAPPING

where syx1.x2
and s2

x1.x2
denote the conditional covariance

To simplify the argument, consider the situation of trait y and QTL x1 on QTL x2 and conditional variance
where the test positions for QTL are located precisely of x1 on x2 (Zeng 1993). In the same way, the partial
at the marker position. If only two epistatic QTL, A (x1) regression coefficient byx2.x1

for QTL B is a2. That is, the
and B (x2), control a quantitative trait y, the single- partial regression coefficients are asymptotically unbi-
marker regression coefficient of y on one of the QTL, ased for main effects of QTL and not affected by epistasis
say x1, is given by byx1

5 Cov(y, x1)/V(x1), where Cov(y, if epistasis is present but ignored in the backcross popu-
x1) is the covariance between the trait and QTL A and lation. In an F2 population, the partial regressions would
V(x1) is the variance of QTL A. Assuming that there is be affected by epistasis if epistatic QTL are linked (Kao
no covariance between environmental deviation and 1995). However, if epistatic effect is not fitted into the
QTL, it is easy to show that model, the genetic variance contributed by epistasis is

not controlled and becomes part of the residue in theCov(y,x1) 5 Cov(m 1 a1x1 1 a2x2 1 wx1xx 1 εi,x1) model, and the power of detection could be low. This
conclusion can be applied to mapping QTL.5 a1V(x1) 1 a2Cov(x1,x2) 1 w Cov(x1x2,x1)


