|
Syllabus, Readings and Lecture Notes
- Background
- Topics: Why computational biology, biological information, challenges in computational
biology.
- Required reading
- Recommended reading
- Lecture notes
- Course Overview (PDF, PPTX) (9/7)
- Molecular Biology 101 (PDF, PPTX) (9/12)
- Sequence Assembly
- Topics: Fragment assembly, Sequencing by hybridization, Overlap-layout-consensus
- Required reading:
- Recommended reading:
- Lecture notes
- Sequence Alignment
- Topics: Introduction to biological sequences, DNA sequence, dynamic programming methods for global and local alignment,
gap penalty functions, heuristics in alignment, BLAST, pairwise sequence alignment, multiple sequence alignment
- Required reading
- Sections 2.1-2.5, 2.7, 2.8 (1.3 for brief background in probability)
- Sections 6.1-6.4
- Recommended reading
- Lecture notes
- Pairwise Sequence Alignment (PDF, PPTX) (9/26, 9/28) (updated 10/4)
- Intro to Probability for Discrete Variables (PDF, PPTX) (10/3)
- The statistics of pairwise alignment (PDF, PPTX) (10/3, 10/5) (updated 10/14)
- Heuristic methods for sequence database searching
(PDF, PPTX) (10/5)
- Multiple sequence alignment
(PDF, PPTX) (10/10), (PDF, PPTX) (10/12)
- Phylogenetic Trees
- Topics: Distance, parsimony, and probabilistic methods of phylogenetic tree construction, models of sequence evolution
- Required reading
- Chapter 7, Sections 7.1-7.5 in Durbin et al.
- Chapter 8, Sections 8.1-8.3 in Durbin et al.
- Recommended reading
- J. Alfoldi, K. Toh. Comparative genomics as a tool to understand evolution and disease.
- Lecture notes
- Introduction to Phylogenetic trees (PDF, PPTX) (10/12)
- Distance-based methods for phylogenetic tree reconstruction (PDF, PPTX) (10/17, 10/19)
- Parsimony methods for phylogenetic tree reconstruction. (PDF, PPTX) (10/19)
- Probabilistic methods for phylogenetic tree reconstruction. PDF, PPTX) (10/24, 10/26)
- Annotating genomes
- Topics: Markov chains, high-order Markov models, Forward/Backward/Viterbi algorithms, applications to genome segmentation and annotation.
- Required reading
- Sections 3.0, 3.1
- Sections 3.2, 3.3 in Durbin et al.
- Recommended reading
- Lecture notes
- Markov models. (PDF, PPTX) (11/2, 11/7)
- Hidden Markov models. (PDF, PPTX) (11/7, 11/9)
- Hidden Markov model parameter estimation. (PDF, PPTX) (11/9, 11/14)
- HMM applications. (PDF, PPTX) (11/14, 11/16)
- Clustering approaches to ``omic'' datasets.
- Topics: high-throughput technologies, clustering algorithms, evaluation of clusters
- Required reading
- Recommended reading
- Lecture notes
- High-throughput omic datasets and clustering. (PDF, PPTX) (11/16)
- Flat clustering. (PDF, PPTX) (11/22)
- Hierarchical clustering. (PDF, PPTX) (11/28)
- Clustering evaluation. (PDF, PPTX) (11/28)
- Modeling and analysis of networks
- Topics: Biological networks, computational problems in network biology, Bayesian networks, module networks, parameter and structure learning, regression-based network inference, network applications
- Required reading
- Recommended reading
- Lecture notes
- Introduction to biological molecular networks. (PDF, PPTX) (11/28, 11/30)
- Network structure learning: Bayesian networks. (PDF, PPTX) (11/30,12/5,12/7)
- Module networks. (PDF, PPTX) (12/7,12/12)
- Dependency networks. (PDF, PPTX) (12/12)
- Final thoughts
- Final thoughts. (PDF, PPTX) (12/12)
|