Selected Publications by Mark Craven

Contact
Teaching
Publications
Group
Research
Home

  • A. Cobian, M. Abbott, A. Sood, Y. Sverchkov, L. Hanrahan, T. Guilbert, and M. Craven (2020).
    Modeling Asthma Exacerbations from Electronic Health Records
    Proceedings of the AMIA Joint Summits on Translational Science.

  • G. Pack, M. Craven and A. Acharya (2020).
    A Secondary Analysis of Panoramic Radiographs Reveals Hotspots in the Maxillofacial Region Associated with Diabetes
    Proceedings of the AMIA Joint Summits on Translational Science.

  • N. Bollig, L. Clarke, E. Elsmo, and M. Craven (2020).
    Machine learning for syndromic surveillance using veterinary necropsy reports.
    PLoS ONE 15(2):e0228105.

  • S. Kiblawi, D. Chasman, A. Henning, E. Park, H. Poon, M. Gould, P. Ahlquist and M. Craven (2019).
    Augmenting subnetwork inference with information extracted from the scientific literature.
    PLoS Computational Biology 15(6):e1006758.

  • K. Lee, A. Sood and M. Craven (2019).
    Understanding Learned Models by Identifying Important Features at the Right Resolution.
    Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence.

  • J. Gern, D. Jackson, R. Lemanske, C. Seroogy, U. Tachinardi, M. Craven, et al. (2019).
    The Children's Respiratory and Environmental Workgroup (CREW) Birth Cohort Consortium: Design, Methods, and Study Population.
    Respiratory Research.

  • S. Shin, R. Hudson, C. Harrison, M. Craven, S. Keles (2018).
    atSNP Search: A Web Resource for Statistically Evaluating Influence of Human Genetic Variation on Transcription Factor Binding.
    Bioinformatics.

  • Y. Sverchkov, Y.-H. Ho, A. Gasch and M. Craven (2018).
    Context-Specific Nested Effects Models.
    Proceedings of the Annual Inernational Conference on Research in Computational Biology (RECOMB).

  • Y. Sverchkov and M. Craven (2017).
    A Review of Active Learning Approaches to Experimental Design for Uncovering Biological Networks.
    PloS Computational Biology 13(6):e1005466.

    Y. Somnay, M. Craven, K. McCoy, S. Carty, T. Wang, C. Greenberg, and D. Schneider (2017).
    Improving diagnostic recognition of primary hyperparathyroidism with machine learning.
    Surgery 161(4):1113-1121.

  • S. I. Feld, A. G. Cobian, S. E. Tevis, G. D. Kennedy and M. W. Craven (2016).
    Modeling the Temporal Evolution of Postoperative Complications
    Proceedings of the American Medical Informatics Association (AMIA) Annual Symposium.

  • K. Lee, A. Kolb, I. Larsen, M. Craven and C. Brandt (2016).
    Mapping Murine Corneal Neovascularization and Weight Loss Virulence Determinants in the HSV-1 Genome and the Detection of an Epistatic Interaction between the UL and IRS/US Regions.
    Journal of Virology 90(18):8115-31.

  • A. Kolb, K. Lee, I. Larsen, M. Craven and C. Brandt (2016).
    Quantitative Trait Locus Based Virulence Determinant Mapping of the HSV-1 Genome in Murine Ocular Infection: Genes Involved in Viral Regulatory and Innate Immune Networks Contribute to Virulence.
    PLoS Pathogens 12(3):e1005499.

  • S. E. Tevis, A. G. Cobian, H. P. Truong, M. W. Craven and G. D. Kennedy (2016).
    Implications of Multiple Complications on the Postoperative Recovery of General Surgery Patients.
    Annals of Surgery 263(6):1213-1218.

  • M. Cevik, M. A. Ergun, N. K. Stout, A. Trentham-Dietz, M. Craven and O. Alagoz (2016).
    Using Active Learning for Speeding up Calibration in Simulation Models.
    Medical Decision Making 36(5):581-593.

  • K. Lee, A. Kolb, Y. Sverchkov, J. Cuellar, M. Craven and C. Brandt (2015).
    Recombination Analysis of Herpes Simplex Virus Type 1 Reveals a Bias towards GC Content and the Inverted Repeat Region.
    Journal of Virology 89(14):7214-7223.

  • D. Chasman, Y.-H. Ho, D. Berry, C. Nemec, M. MacGilvray, A. Merrill, J. Hose, M. V. Lee, J. Will, J. Coon, A. Ansari, M. Craven and A. Gasch (2014).
    Pathway Connectivity and Signaling Coordination in the Yeast Stress-Activated Signaling Network.
    Molecular Systems Biology 10(11):759.

  • D. Chasman, B. Gancarz, L. Hao, M. Ferris, P. Ahlquist and M. Craven (2014).
    Inferring Host Gene Subnetworks Involved in Viral Replication.
    PLoS Computational Biology 10(5).

  • L. Hao, Q. He, Z. Wang, M. Craven, M. Newton and P. Ahlquist (2013).
    Limited Agreement of Independent RNAi Screens for Virus-Required Host Genes Owes More to False-Negative than False-Positive Factors.
    PLoS Computational Biology 9(9).

  • H. Shatkay and M. Craven (2012).
    Mining the Biomedical Literature.
    MIT Press.

  • E. Kawaler, A. Cobian, P. Peissig, D. Cross, S. Yale and M. Craven (2012).
    Learning to Predict Post-Hospitalization VTE Risk from EHR Data.
    Proceedings of the American Medical Informatics Association (AMIA) Annual Symposium.

  • A. Vlachos & M. Craven (2012).
    Biomedical Event Extraction from Abstracts and Full Papers using Search-Based Structured Prediction.
    BMC Bioinformatics 13(Suppl. 11):S5.

  • A. Vlachos & M. Craven (2011).
    Search-based Structured Prediction Applied to Biomedical Event Extraction.
    Proceedings of the 15th Conference on Computational Natural Language Learning (CoNLL-2011).

  • D. Andrzejewski, X. Zhu, M. Craven & B. Recht (2011).
    A Framework for Incorporating General Domain Knowledge into Latent Dirichlet Allocation using First-Order Logic.
    Proceedings of the 22nd International Joint Conference on Artificial Intelligence.

  • A. Kolb, M. Adams, E. Cabot, M. Craven & C. Brandt (2011).
    Multiplex Sequencing of Several Ocular Herpes Simplex Virus Type-1 Genomes: Phylogeny, Sequence Variability, and SNP Distribution.
    Investigative Ophthalmology and Visual Science 52(12).

  • B. Smith, B Settles, W. Hallows, M. Craven & J. Denu (2010).
    SIRT3 Substrate Specificity Determined by Peptide Arrays and Machine Learning.
    ACS Chemical Biology.

  • A. Vlachos & M. Craven (2010).
    Detecting Speculative Language using Syntactic Dependencies and Logistic Regression.
    Proceedings of the Fourteenth Conference on Computational Natural Language Learning (CoNLL-2010):Shared Task.

  • D. Andrzejewski, X. Zhu & M. Craven (2009).
    Incorporating Domain Knowledge into Topic Modeling via Dirichlet Forest Priors.
    Proceedings of the 26th International Conference on Machine Learning, pp. 25-32.

  • A. Smith, A. Vollrath, C. Bradfield & M. Craven (2009).
    Clustered Alignments of Gene-Expression Time Series Data.
    Bioinformatics 25:i119-i127. (special issue: Proceedings of the 17th ISMB and 8th ECCB Conferences)

  • B. Settles & M. Craven (2008).
    An Analysis of Active Learning Strategies for Sequence Labeling Tasks.
    Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1069-1078, ACL Press.

  • B. Settles, M. Craven & L. Friedland (2008).
    Active Learning with Real Annotation Costs.
    Proceedings of the NIPS Workshop on Cost-Sensitive Learning.

  • A. Smith, A. Vollrath, C. Bradfield & M. Craven (2008).
    Similarity Queries for Temporal Toxicogenomic Expression Profiles.
    PLoS Computational Biology 4(7).

  • A. Smith & M. Craven (2008).
    Fast Multisegment Alignments for Temporal Expression Profiles.
    Proceedings of the 7th International Conference on Computational Systems Bioinformatics, 315--326. Imperial College Press.

  • K. Noto & M. Craven (2008).
    Learning Hidden Markov Models for Regression using Path Aggregation.
    Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence .

  • B. Settles, S. Ray & M. Craven (2008).
    Multiple-Instance Active Learning.
    Advances in Neural Information Processing Systems (NIPS-20), MIT Press.

  • Y. Pan, T. Durfee, J. Bockhorst & M. Craven (2007).
    Connecting Quantitative Regulatory-Network Models to the Genome.
    Bioinformatics 23(13):i367-i376. (special issue: Proceedings of the 15th ISMB and 6th ECCB Conferences)

  • K. Noto & M. Craven (2007).
    Learning Probabilistic Models of cis-Regulatory Modules that Represent Logical and Spatial Aspects.
    Bioinformatics 23(2):e156-e162. (special issue: Proceedings of the 5th European Conference on Computational Biology)

  • A. Goldberg, D. Andrzejewski, J. Van Gael, B. Settles, X. Zhu & M. Craven (2007).
    Ranking Biomedical Passages for Relevance and Diversity.
    Proceedings of the Fifteenth Text Retrieval Conference (TREC 2006).

  • K. Noto & M. Craven (2006).
    A Specialized Learner for Inferring Structured cis-Regulatory Modules.
    BMC Bioinformatics, 7:528.

  • T. Brow, B. Settles & M. Craven (2006).
    Classifying Biomedical Articles by Making Localized Decisions.
    Proceedings of the Fourteenth Text Retrieval Conference (TREC 2005).

  • S. Ray & M. Craven (2005).
    Supervised versus Multiple Instance Learning: An Empirical Comparison.
    Proceedings of the 22nd International Conference on Machine Learning, 697-704. ACM Press.

  • J. Bockhorst & M. Craven (2005).
    Markov Networks for Detecting Overlapping Elements in Sequence Data.
    Advances in Neural Information Processing Systems (NIPS-17), 193-200. MIT Press.

  • S. Ray & M. Craven (2005).
    Learning Statistical Models for Annotating Proteins with Function Information using Biomedical Text.
    BMC Bioinformatics, 6(Suppl. 1):S18

  • B. Settles & M. Craven (2005).
    Exploiting Zone Information, Syntactic Features, and Informative Terms in Gene Ontology Annotation from Biomedical Documents.
    Proceedings of the Thirteenth Text Retrieval Conference (TREC 2004).

  • K. Hayes, A. Vollrath, G. Zastrow, B. McMillan, M. Craven, S. Jovanovich, J. Walisser, D. Rank, S. Penn, J. Reddy, R. Thomas & C. Bradfield (2005).
    EDGE: A Centralized Resource for the Comparison, Analysis and Distribution of Toxicogenomic Information.
    Molecular Pharmacology, 67(4):1360-1368.

  • K. Noto & M. Craven (2004).
    Learning Regulatory Network Models that Represent Regulator States and Roles.
    In E. Eskin and C. Workman (Editors) Regulatory Genomics: RECOMB 2004 International Workshop, 52-64. Springer-Verlag.

  • G. Yao, M. Craven, N. Drinkwater & C. Bradfield (2004).
    Interaction Networks in Yeast Define and Enumerate the Signaling Steps of the Vertebrate Aryl Hydrocarbon Receptor.
    PLoS Biology, 2(3):356-367.

  • M. Skounakis, M. Craven & S. Ray (2003).
    Hierarchical Hidden Markov Models for Information Extraction.
    Proceedings of the 18th International Joint Conference on Artificial Intelligence, 427-433. Morgan Kaufmann.

  • M. Skounakis & M. Craven (2003).
    Evidence Combination in Biomedical Natural-Language Processing.
    Proceedings of the 3rd Workshop on Data Mining in Bioinformatics, held in conjunction with KDD 2003.

  • J. Bockhorst, Y. Qiu, J. Glasner, M. Liu, F. Blattner & M. Craven (2003).
    Predicting Bacterial Transcription Units using Sequence and Expression Data.
    Bioinformatics, 19(Supplement):34-43.
    (special issue: Proceedings of the 11th International Conference on Intelligent Systems for Molecular Biology)

  • J. Bockhorst, M. Craven, D. Page, J. Shavlik & J. Glasner (2003).
    A Bayesian Network Approach to Operon Prediction.
    Bioinformatics, 19(10):1227-1235.

  • D. Page & M. Craven (2003).
    Biological Applications of Multi-Relational Data Mining.
    SIGKDD Explorations, 5(1):69-79.

  • M. Craven (2003).
    The Genomics of a Signaling Pathway: A KDD Cup Challenge Task.
    SIGKDD Explorations, 4(2):97-98.

  • J. Bockhorst & M. Craven (2002).
    Exploiting Relations Among Concepts to Acquire Weakly Labeled Training Data.
    Proceedings of the 19th International Conference on Machine Learning, 43-50. Morgan Kaufmann.

  • R. Thomas, D. Rank, S. Penn, G. Zastrow, K. Hayes, K. Pande, E. Glover, T. Silander, M. Craven, J. Reddy, S. Jovanovich & C. Bradfield (2001).
    Identification of Toxicologically Predictive Gene Sets Using cDNA Microarrays.
    Molecular Pharmacology, 60:1189-1194.

  • J. Bockhorst & M. Craven (2001).
    Refining the Structure of a Stochastic Context-Free Grammar.
    Proceedings of the 17th International Joint Conference on Artificial Intelligence, 1315-1320. Morgan Kaufmann.

  • S. Ray & M. Craven (2001).
    Representing Sentence Structure in Hidden Markov Models for Information Extraction.
    Proceedings of the 17th International Joint Conference on Artificial Intelligence, 1273-1279. Morgan Kaufmann.

  • M. Craven & S. Slattery (2001).
    Relational Learning with Statistical Predicate Invention: Better Models for Hypertext.
    Machine Learning, 43(1-2): 97-119.

  • M. Craven, D. Page, J. Shavlik, J. Bockhorst & J. Glasner (2000).
    A Probabilistic Learning Approach to Whole-Genome Operon Prediction.
    Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology, 116-127. AAAI Press.

  • M. Craven, D. Page, J. Shavlik, J. Bockhorst & J. Glasner (2000).
    Using Multiple Levels of Learning and Diverse Evidence Sources to Uncover Coordinately Controlled Genes.
    Proceedings of the 17th International Conference on Machine Learning, 199-206. Morgan Kaufmann.

  • M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam & S. Slattery (2000).
    Learning to Construct Knowledge Bases from the World Wide Web.
    Artificial Intelligence, 118(1-2): 69-113.

  • M. Craven & J. Kumlien (1999).
    Constructing Biological Knowledge Bases by Extracting Information from Text Sources.
    Proceedings of the 7th International Conference on Intelligent Systems for Molecular Biology, 77-86, AAAI Press.

  • M. Craven & J. Shavlik (1999).
    Rule Extraction: Where Do We Go from Here?
    University of Wisconsin Machine Learning Research Group Working Paper 99-1.

  • S. Slattery & M. Craven (1998).
    Combining Statistical and Relational Methods for Learning in Hypertext Domains.
    Proceedings of the 8th International Conference on Inductive Logic Programming, pp. 38-52. Springer Verlag.

  • M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam & S. Slattery (1998).
    Learning to Extract Symbolic Knowledge from the World Wide Web.
    Proceedings of the 15th National Conference on Artificial Intelligence, pp. 509-516. AAAI Press.

  • M. Craven, S. Slattery & K. Nigam (1998).
    First-Order Learning for Web Mining.
    Proceedings of the 10th European Machine Learning Conference, 250-255. Springer Verlag.

  • M. Craven & J. Shavlik (1997).
    Understanding Time-Series Networks: A Case Study in Rule Extraction.
    International Journal of Neural Systems 8(4): 373-384.

  • M. Craven & J. Shavlik (1997).
    Using Neural Networks for Data Mining.
    Future Generation Computer Systems (Special Issue on Data Mining) 13:211-229.

  • M. Craven (1996).
    Extracting Comprehensible Models from Trained Neural Networks.
    PhD thesis, Department of Computer Sciences, University of Wisconsin-Madison.
    (Also appears as UW Technical Report CS-TR-96-1326)

  • M. Craven & J. Shavlik (1995).
    Extracting Tree-Structured Representations of Trained Networks.
    Advances in Neural Information Processing Systems (NIPS-8), pp. 24-30. MIT Press.

  • J. Jackson & M. Craven (1995).
    Learning Sparse Perceptrons.
    Advances in Neural Information Processing Systems (NIPS-8), pp. 654-660. MIT Press.

  • M. Craven, R. Mural, L. Hauser & E. Uberbacher (1995).
    Predicting Protein Folding Classes without Overly Relying on Homology.
    Proceedings of the 3rd International Conference on Intelligent Systems for Molecular Biology, pp.98-106. AAAI Press.

  • M. Craven & J. Shavlik (1994).
    Using Sampling and Queries to Extract Rules from Trained Neural Networks.
    Proceedings of the 11th International Conference on Machine Learning, pp. 37-45. Morgan Kaufmann.

  • M. Craven & J. Shavlik (1993).
    Learning to Represent Codons: A Challenge Problem for Constructive Induction.
    Proceedings of the 13th International Joint Conference on Artificial Intelligence, pp. 1319-1324. Morgan Kaufmann.

  • M. Craven & J. Shavlik (1993).
    Learning Symbolic Rules Using Artificial Neural Networks.
    Proceedings of the 10th International Conference on Machine Learning, pp. 73-80. Morgan Kaufmann.