|
Syllabus, Readings and Lecture Notes
Course Overview
RNA-seq Analysis and Gene Discovery
- topics: RNA-seq technology, transcript quantification, gene finding, interpolated Markov models
- required reading
- B. Li, V. Ruotti, R.M. Stewart, J.A. Thomson, and C.N. Dewey. RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26(4): 493-500, 2010.
- S. Salzberg, A. Delcher, S. Kasif, and O. White.
Microbial
gene identification using interpolated Markov models.
Nucleic Acids Research 26(2):544-548, 1998.
- Sections 3.1, 3.5 in Durbin et al.
- optional reading
- L.H. LeGault and C.N. Dewey. Inference of alternative splicing from RNA-Seq data with probabilistic splice graphs. Bioinformatics 29(18): 2300-2310, 2013.
- A. Conesa, P. Madrigal, S. Tarazona, D. Gomez-Cabrero, A. Cervera, A. McPherson, M.W. Szczesniak, D.J. Gaffney, L.L. Elo, X. Zhang, and A. Mortazavi. A survey of best practices for RNA-seq data analysis. Genome Biology 17(13), 2016.
- Sections 3.4, 4.1 in Durbin et al.
- C. Burge and S. Karlin. Prediction of complete gene structures in human
genomic DNA. Journal of Molecular Biology 268(1):78-94, 1997.
- I. Korf, P. Flicek, D. Duan, and M. Brent.
Integrating genomic homology into gene structure prediction.
Bioinformatics 17(Suppl. 1):S140-S148, 2001.
- lecture notes
- RNA-Seq analysis and gene discovery
(PDF, PPTX)
(1/29,1/31)
Machine Learning in Bioinformatics
- topics: unsupervised learning, partitioning vs. hierarchical clustering, classification, support vector machine
- required reading
- optional reading
- lecture notes
- Machine Learning in Bioinformatics
(PDF, PPTX)
(2/5, 2/7)
Single-cell RNA-seq Analysis
- topics: single cell RNA-seq processing and analysis, cell clustering, cell types, cell-type gene regulation
- required reading
- optional reading
- lecture notes
- single cell RNA-seq processing and analysis (PDF, PPTX)(2/12, 2/14)
- cell types and cell-type regulatory networks (PDF, PPTX)(2/14, 2/19)
Network Biology
- topics: biological network analysis, protein interactions, pathway identification, linear programming, min cost flow
- required reading
- E. Yeger-Lotem, L. Riva, L.J. Su, A.D. Gitler, A.G. Cashikar, O.D. King, P.K. Auluck, M.L. Geddie, J.S. Valastyan, D.R. Karger, S. Lindquist, and E. Fraenkel. Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity. Nat Genet 41(3):316-323, 2009.
- optional reading
- T. Ideker, and R. Nussinov. Network approaches and applications in biology. PLoS Comput Biol, 13(10):e1005771, 2017.
- D-Y. Cho, Y-A. Kim, and T.M. Przytycka. Chapter 5: Network Biology Approach to Complex Diseases. PLoS Comput Biol, 8(12):e1002820, 2012.
- A. Barabasi, and Z. N. Oltvai. Network biology: understanding the cell's functional organization. Nat Rev Genet, 5:101-113, 2004.
- J.W. Chinneck. Practical Optimization: A Gentle Introduction.
- lecture notes
- Network biology (PDF, PPTX) (2/21, 2/26)
Epigenomics
- topics: Epigenomic data types, DNase I hypersensitivity, Gaussian processes, ROC curve
- required reading
- R.I. Sherwood, T. Hashimoto, C.W. O'Donnell, S. Lewis, A.A. Barkal, J.P. van Hoff, V. Karun, T. Jaakkola, and D.K. Gifford. Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat Biotechnol 32(2):171-178, 2014.
- J. Lever, M. Krzywinski, and N. Altman. Points of Significance: Classification evaluation. Nat Methods 13(8):603-604, 2016.
- optional reading
- lecture notes
Deep Learning Applications
- topics: deep learning, convolutional neural networks, interpreting noncoding genetic variants, attention and transformer models
- required reading
- optional reading
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, & Illia Polosukhin. Attention Is All You Need. arXiv, 2023.
- Shuang Zhang, Rui Fan, Yuti Liu, Shuang Chen, Qiao Liu, Wanwen Zeng. Applications of transformer-based language models in bioinformatics: a survey. Bioinformatics Advances Volume 3, Issue 1, 2023.
- Avsec, Ž., Agarwal, V., Visentin, D. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nature Methods 18, pages 1196–1203, 2021.
- lecture notes
- Interpreting noncoding variants by deep learning
(PDF, PPTX)
(3/11, 3/13, 3/18)
- Attention and Transformer Models for Genomics
(PDF, PPTX)
(3/18)
Learning Motif Models
- topics: Expectation Maximization (EM) algorithm, learning motif models, sequence entropy
- required reading
- optional reading
- lecture notes
- Learning Sequence
Motif Models using EM
(PDF, PPTX)
(4/1, 4/3)
Protein Structure and Alphafold
- topics: protein structure, alphafold, structure prediction
- required reading
- optional reading
- lecture notes
- Protein Structure & Alphafold (by Prof. Anthony Gitter)
(PDF, PPTX)
(4/8, 4/10)
Genotype Analysis
- topics: haplotype inference, genome-wide association studies (GWAS), quantitative trait loci (QTL) mapping, multiple hypothesis testing
- required reading
- optional reading
- lecture notes
- Linking Genetic Variation to Phenotypes
(PDF, PPTX) (4/15)
- GWAS, multiple testing correction and QTLs
(PDF, PPTX) (4/17, 4/22)
Advanced Topics in Bioinformatics
- topics: Challenges for machine learning applications, spatial transcriptomics, Imaging genetics, Artificial intelligence in drug discovery
- reading
- M. Libbrecht, W. S. Noble. Machine learning applications in genetics and genomics . Nat Rev Genet. 16, 321-332, 2015
- P. Stahl et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science Vol. 353, Issue 6294, pp. 78-82, 2016.
- L. Elliott et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank . Nature 562, 201-216, 2018.
- J. Vamathevan et al. Applications of machine learning in drug discovery and development . Nat Rev Drug Discov 18, 463-477, 2019.
- R. Roscher et al. Explainable Machine Learning for Scientific Insights and Discoveries. IEEE Access 8, 42200-42216, 2020.
- lecture notes
- Advanced Topics in Bioinformatics
(PDF, PPTX)
(4/24)
Lecture Notes
Thank you to Professors Mark Craven, Tony Gitter and Colin Dewey for providing
lecture material. These slides, excluding third-party material, are
licensed
under CC BY-NC
4.0 by Mark Craven, Colin Dewey, Anthony Gitter and Daifeng Wang.
|